Для чего характерна геометрическая изомерия. Что такое геометрический изомер? Изомерия по углеродному скелету

Изомеры - вещества с одинаковым строением молекулы, но разными химическим строением и свойствами.

Виды изомерии

I . Структурная - заключается в различной последовательности соединения атомов в цепи молекулы:

1) Изомерия цепи

Следует отметить, что атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным , с двумя другими атомами углерода - вторичным , с тремя - третичным , с четырьмя - четвертичным .

2) Изомерия положения


3) Изомерия межклассовая

4) Таутомерия

Таутомери́я (от греч. ταύτίς — тот же самый и μέρος — мера) — явление обратимой изомерии, при которой два или более изомера легко переходят друг в друга. При этом устанавливается таутомерное равновесие, и вещество одновременно содержит молекулы всех изомеров в определённом соотношении. Чаще всего при таутомеризации происходит перемещение атомов водорода от одного атома в молекуле к другому и обратно в одном и том же соединении.

II. Пространственная (стерео) - обусловлена различным положением атомов или групп относительно двойной связи или цикла, исключающих свободное вращение соединённых атомов углерода

1. Геометрическая (цис -, транс - изомерия)


Если атом углерода в молекуле связан с четырьмя различными атомами или атомными группами, например:

то возможно существование двух соединений с одинаковой структурной формулой, но отличающихся пространственным строением. Молекулы таких соединений относятся друг к другу как предмет и его зеркальное изображение и являются пространственными изомерами.

Изомерия этого вида называется оптической, изомеры - оптическими изомерами или оптическими антиподами:

Молекулы оптических изомеров несовместимы в пространстве (как левая и правая руки), в них отсутствует плоскость симметрии.
Таким образом,

  • оптическими изомерами называются пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение.

Оптические изомеры аминокислоты

3. Конформационная изомерия

Следует отметить, что атомы и группы атомов, связанные друг с другом σ -связью, постоянно вращаются относительно оси связи, занимая различное положение в пространстве друг относительно друга.

Молекулы, имеющие одинаковое строение и различающиеся пространственным расположением атомов в результате вращения вокруг С-С связей, называются конформерами.

Для изображения конформационных изомеров удобно пользоваться формулами - проекциями Ньюмена:

Явление конформационной изомерии можно рассмотреть и на примере циклоалканов. Так, для циклогексана характерны конформеры:

Рассмотренные нами ранее виды формул, описывающих органические вещества, показывают, что одной молекулярной может соответствовать несколько разных структурных формул.

Например, молекулярной формуле C2 H6 O соответствуют два вещества с разными структурными формулами - этиловый спирт и диметиловый эфир. Рис. 1.

Этиловый спирт - жидкость, которая реагирует с металлическим натрием с выделением водорода, кипит при +78,50С. При тех же условиях диметиловый эфир - газ, не реагирующий с натрием, кипит при -230С.

Эти вещества отличаются своим строением - разным веществам соответствует одинаковая молекулярная формула.

Рис. 1. Межклассовая изомерия

Явление существования веществ, имеющих одинаковый состав, но разное строение и поэтому разные свойства называют изомерией (от греческих слов «изос» - «равный» и «мерос» - «часть», «доля»).

Типы изомерии

Существуют разные типы изомерии.

Структурная изомерия связана с разным порядком соединения атомов в молекуле.

Этанол и диметиловый эфир - структурные изомеры. Поскольку они относятся к разным классам органических соединений, такой вид структурной изомерии называется еще и межклассовой . Рис. 1.

Структурные изомеры могут быть и внутри одного класса соединений, например формуле C5H12 соответствуют три разных углеводорода. Это изомерия углеродного скелета . Рис. 2.

Рис. 2 Примеры веществ - структурных изомеров

Существуют структурные изомеры с одинаковым углеродным скелетом, которые отличаются положением кратных связей (двойных и тройных) или атомов, замещающих водород. Этот вид структурной изомерии называется изомерией положения .

Рис. 3. Структурная изомерия положения

В молекулах, содержащих только одинарные связи, при комнатной температуре возможно почти свободное вращение фрагментов молекулы вокруг связей, и, например, все изображения формул 1,2-дихлорэтана равноценны. Рис. 4

Рис. 4. Положение атомов хлора вокруг одинарной связи

Если же вращение затруднено, например, в циклической молекуле или при двойной связи, то возникает геометрическая или цис-транс изомерия. В цис-изомерах заместители находятся по одну сторону плоскости цикла или двойной связи, в транс-изомерах - по разные стороны.

Цис-транс изомеры существуют в том случае, когда с атомом углерода связаны два разных заместителя. Рис. 5.

Рис. 5. Цис- и транс- изомеры

Еще один тип изомерии возникает в связи с тем, что атом углерода с четырьмя одинарными связями образует со своими заместителями пространственную структуру - тетраэдр. Если в молекуле есть хотя бы один углеродный атом, связанный с четырьмя разными заместителями, возникает оптическая изомерия . Такие молекулы не совпадают со своим зеркальным изображением. Это свойство называется хиральностью - от греческого с hier - «рука». Рис. 6. Оптическая изомерия характерна для многих молекул, входящих в состав живых организмов.

Рис. 6. Примеры оптических изомеров

Оптическая изомерия называется также энантиомерией (от греческого enantios - «противоположный» и meros - «часть»), а оптические изомеры - энантиомерами . Энантиомеры оптически активны, они вращают плоскость поляризации света на один и тот же угол, но в противоположные стороны: d- , или (+)-изомер, - вправо, l- , или (-)-изомер, - влево. Смесь равных количеств энантиомеров, называемая рацематом , оптически недеятельна и обозначается символом d,l- или (±).

ИСТОЧНИКИ

источник видео - http://www.youtube.com/watch?v=mGS8BUEvkpY

http://www.youtube.com/watch?t=7&v=XIikCzDD1YE

http://interneturok.ru/ru/school/chemistry/10-klass - конспект

источник презентации - http://ppt4web.ru/khimija/tipy-izomerii.html

http://www.youtube.com/watch?t=2&v=ii30Pctj6Xs

http://www.youtube.com/watch?t=1&v=v1voBxeVmao

http://www.youtube.com/watch?t=2&v=a55MfdjCa5Q

http://www.youtube.com/watch?t=1&v=FtMA1IJtXCE

источник презентации - http://mirhimii.ru/10class/174-izomeriya.html

Цис-транс -изомерия или геометрическая изомерия - один из видов стереоизомерии : заключается в возможности расположения заместителей по одну или по разные стороны плоскости двойной связи или неароматического цикла. Все геометрические изомеры относятся к диастереомерам , так как не являются зеркальными отражениями друг друга. Цис - и транс -изомеры встречаются как среди органических соединений, так и среди неорганических. Понятия цис и транс не используются в случае конформеров , двух геометрических форм, легко переходящих друг в друга, вместо них используются обозначения «син» и «анти».

Обозначения «цис » и «транс » произошли из латыни, в переводе с этого языка цис означает «на одной стороне» , а транс - «на другой стороне» или «напротив». Термин «геометрическая изомерия» согласно ИЮПАК считается устаревшим синонимом цис -транс -изомерии .

Следует помнить, что цис-транс -номенклатура описывает относительное расположение заместителей, и не следует путать её с E,Z -номенклатурой, которая даёт абсолютное стереохимическое описание и применяется только к алкенам .

Органическая химия

Цис-транс -изомерией проявляют также и алициклические соединения , у которых заместители могут располагаться по одну или по разные стороны плоскости кольца. В качестве примера можно привести 1,2-дихлорциклогексан:

транс -1,2-дихлорциклогексан цис -1,2-дихлорциклогексан

Различие в физических свойствах

цис -2-пентен транс -2-пентен
цис -1,2-дихлорэтилен транс -1,2-дихлорэтилен
цис -бутендиовая кислота
(малеиновая кислота)
транс -бутендиовая кислота
(фумаровая кислота)


Олеиновая кислота Элаидиновая кислота

Отличия могут быть незначительными, как в случае температуры кипения алкенов с прямой цепью, таких как 2-пентен , цис -изомер которого кипит при 37 °C, а транс -изомер - при 36 °C . Разница между цис - и транс - становится ещё больше, если в молекуле есть поляризованные связи, как в 1,2-дихлорэтилене . Цис -изомер в данном случае кипит при 60,3 °C, а вот транс -изомер закипает при 47,5 °C . В случае цис -изомера эффект от двух полярных связей C-Cl складываются, образуя сильный молекулярный диполь , что даёт начало сильным межмолекулярным взаимодействиям (силам Кеезома), которые добавляются к дисперсионным силам и приводит к увеличению точки кипения. В транс -изомере, напротив, подобного не происходит, поскольку два момента C−Cl связей расположены друг напротив друга и аннулируют друг друга, не создавая дополнительный дипольный момент (хотя их квадрупольный момент совсем не равен нулю).

Два геометрических изомера бутендиовой кислоты настолько сильно отличаются по своим свойствам и реакционной способности, что даже получили разные названия: цис -изомер называется малеиновая кислота , а транс -изомер - фумаровая кислота . Ключевое свойство, определяющее относительную температуру кипения, - полярность молекулы, так как она усиливает межмолекулярные взаимодействия, тем самым повышая температуру кипения. В такой же манере симметрия определяет температуру плавления, поскольку симметричные молекулы лучше упаковываются в твёрдом состоянии, даже если полярность молекулы не меняется. Один из примеров такой зависимости - олеиновая и элаидиновая кислоты; олеиновая кислота, цис -изомер, имеет температуру плавления в 13,4 °C, и при комнатной температуре становится жидкостью, в то время как транс -изомер, элаидиновая кислота, обладает более высокой температурой плавления в 43 °C, поскольку более прямой транс -изомер имеет более плотную упаковку и остаётся твёрдым при комнатной температуре.

Цис-транс -изомеры дикарбоновых кислот различаются и по кислотности: малеиновая кислота (цис ) является значительно более сильной кислотой, чем фумаровая (транс ). Так, первая константа диссоциации для фумаровой кислоты pК a1 = 3,03, а для малеиновой кислоты pK a1 = 1,9. Наоборот, константа диссоциации второй карбоксильной группы для фумаровой кислоты больше, чем для малеиновой, а именно: для фумаровой кислоты pK a2 = 4,44, а для малеиновой кислоты pK a2 = 6,07. Благодаря пространственной близости карбоксильных групп в цис -форме увеличивается склонность водорода к ионизации, поэтому первая константа малеиновой кислоты оказывается больше. Однако второму протону труднее преодолеть притяжение двух сближенных карбоксильных групп в цис -изомере, поэтому вторая константа диссоциации малеиновой кислоты меньше, чем у фумаровой . Аналогичный принцип действует и для алициклических дикарбоновых кислот, однако с увеличением размера кольца следует также учитывать влияние неплоской формы цикла .

Вицинальная константа ядерной спин-спиновой связи (3 J HH), измеряемая при помощи ЯМР-спектроскопии , больше для транс -изомеров (диапазон: 12-18 Гц; в среднем: 15 Гц), чем для цис -изомеров (диапазон: 0-12 Гц; в среднем: 8 Гц) .

Стабильность

Как правило для ациклических систем транс цис . Причина этого обычно заключается в усилении нежелательных стерических взаимодействиях близко расположенных заместителей в цис -изомере. По этой же причине удельная теплота сгорания транс -изомеров ниже чем у цис , что указывает на большую термодинамическую стабильность . Исключением из этого правила являются 1,2-дифторэтилен, 1,2-дифтордиазен (FN=NF), 1-бромпропен-1 и несколько других галоген- и кислород-замещённых этиленов . В данном случае цис -изомер оказывается более стабильным, чем транс -изомер поскольку между такими заместителями преобладают не силы отталкивания, а силы притяжения (типа сил Лондона). К тому же благодаря относительно небольшому объёму заместителей не возникает стерических затруднений . Из 1,2-дигалогенэтиленов только у 1,2-дийодэтилена транс-изомер стабильнее, чем цис -изомер, поскольку из-за большого радиуса атомы йода испытывают сильное пространственное взаимодействие, если находятся по одну сторону двойной связи .

Взаимопревращение изомеров

Геометрические изомеры, различие которых связано с положением заместителей вокруг двойной связи, отличаются от стереоизомерных форм иного типа - конформеров . Раздельное существование цис - и транс -изомеров в сущности возможно лишь благодаря высокому энергетическому барьеру вращения вокруг двойной связи, что делает возможным раздельное существование цис - и транс -изомеров, в то время как конформеры существуют только в виде равновесной смеси. Величина барьера вращения вокруг двойной связи в простых алкенах составляет 250-270 кДж/моль. Однако, если поставить с одной стороны сильные доноры электронов (-SR), а с другой - группы, сильные акцепторы электронов (-CN, -COC 6 H 5), поляризовав таким образом двойную связь, то это приведёт к существенному снижению барьера вращения. Барьер вращения вокруг поляризованной таким образом связи может быть снижен до 60-100 кДж/моль. Низкие энергетические барьеры, когда энергетическая разница между цис-транс -изомерами и конформерами сглаживается, обнаружены для аминопроизводных ацетоуксусного эфира и енаминокетонов. Показано, что в таких системах положение равновесия зависит от природы растворителя. Так, енаминокетоны в неполярных растворителях на 100 % существуют в цис -форме, стабилизированной внутренней водородной связью, а в полярных растворителей появляется до 50 % транс -формы .

E,Z -номенклатура

Система обозначений цис -транс хорошо применима только для именования изомерных алкенов с двумя разными видами заместителей при двойной связи, в сложных молекулах такая номенклатура становится слишком неопределённой. В этих случаях используют разработанную ИЮПАК E ,Z -систему обозначений, которая однозначно определяет название соединений для всех возможных случаев, а потому особенно полезна для именования три- и тетразамещённых алкенов. Такая система позволяет избежать путаницы касательно того какие группы следует считать цис - или транс - по отношению к друг другу.

Если две старшие группы расположены по одну сторону двойной связи, то есть находятся в цис -положении друг к другу, то такое вещество называют Z -изомером (от нем. zusammen - вместе). Когда же старшие группы расположены по разные стороны двойной связи (в транс -ориентации), то такой изомер называют E -изомером (от нем. entgegen - напротив). Порядок старшинства групп и атомов определяется по правилам Кана - Ингольда - Прелога . Для каждого из двух атомов в двойной связи необходимо определить старшинство каждого заместителя. Если оба старших заместителя расположены по одну сторону от плоскости π-связи , то такую конфигурацию обозначают символом Z , если же эти группы находятся по разные стороны от плоскости π-связи, то конфигурацию обозначают символом E .

Следует отметить, что цис /транс и E ,Z -номенклатуры опираются на сравнение разных заместителей алкенов, поэтому Z -изомер не всегда соответствует цис -изомеру, а E -изомер - транс -изомеру. Например, транс -2-хлорбутен-2 (две метильных группы C1 и C4, на главной цепи бутена-2а находятся в транс -ориентации) является (Z )-2-хлорбутеном-2 (хлор старше, чем метил, который в свою очередь старше водорода, поэтому хлор и C4-метил рассматриваются как расположенные вместе).

В неорганической химии

Цис транс -изомерия встречается и в неорганических соединениях, в первую очередь в диазенах и комплексных соединениях .

Диазены

Диазены (и схожие с ними дифосфены) проявляют цис-транс- изомерию. Как и в случае органических соединений, цис -изомер более реакционноспособен, только он способен восстанавливать алкены и алкины до алканов . Транс -изомер, сближаясь с алкеном, не может выстроить свои атомы водорода в линию для эффективного восстановления алкена, а цис -изомер благодаря соответствующей форме успешно справляется с этой задачей.

транс -диазен цис -диазен

Комплексные соединения

Неорганические координационные соединения с октаэдрической или плоской квадратной геометрией также подразделяются на цис -изомеры, в которых одинаковые лиганды расположены рядом, и транс -изомеры, в которых лиганды отстоят друг от друга.

Например, два геометрических изомера плоского квадратного строения существуют для Pt(NH 3) 2 Cl 2 , феномен, который Альфред Вернер объяснил в 1893 году. Цис -изомер с полным названием цис -дихлородиамминплатина(II) обладает противоопухолевой активностью, что было продемонстрировано Барнеттом Розенбергом в 1969 году. Сейчас это вещество известно в химиотерапии под коротким названием цисплатин . Транс -изомер (трансплатин), напротив, не обладает какой-либо лекарственной активностью. Каждый из этих изомеров можно синтезировать, опираясь на транс-эффект , что позволяет получить преимущественно нужный изомер.

цис - + и транс - +

Для октаэдрических комплексов с формулой MX 4 Y 2 тоже существуют два изомера. (Здесь M - атом металла, а X и Y - лиганды разных видов.) В цис -изомере два лиганда Y примыкают друг к другу под углом 90°, как и показано для атомов хлора в цис - + на левой картинке. В транс -изомере, показанном справа, два атома хлора расположены на противоположных концах диагонали, проходящей через центральный атом кобальта.

Схожий тип изомерии октаэдральных комплексов состава MX 3 Y 3 - это гран-ос -изомерия, или гранево-осевая изомерия, когда некоторое количество лигандов оказываются в цис - или транс -положении друг к другу. В гран -изомерах лиганды одного типа занимают вершины треугольной грани октаэдра, а в ос -изомерах эти же лиганды находятся в трёх соседних позициях так, что два лиганда оказываются по разные стороны от центрального атома и на одной оси с ним

К конфигурационной относится оптическая и геометрическая изомерия.

ОПТИЧЕСКАЯ ИЗОМЕРИЯ

В 1815 г. Ж. Био открыл существование оптической активности для органических соединений. Было установлено, что некоторые органические соединения имеют способность вращать плоскость поляризации поляризованного света. Вещества, которые обладают такой способностью, называются оптически активными.

Если луч обычного света, в котором, как известно, электромагнитные колебания распостраняются в разных плоскостях, перпендикулярных к направлению его распространения, пропустить через призму Николя, то выходящий свет будет плоскополяризованным, В таком луче электромагнитные колебания совершаются только в одной плоскости. Эту плоскость называют плоскостью поляризации (рис. 3.2).

При прохождении поляризованного луча света через оптически активное вещество плоскость поляризации поворачивается на определенный угол α вправо или влево. Если вещество отклоняет плоскость поляризации вправо (при наблюдении навстречу лучу), его называют правовращающим, если влево – левоврашаюшим. Правое вращение обозначают знаком (+), левое – знаком (-).

Рис. 3.2. Схема образования поляризованного света и врашения плоскости поляризаиии оптически активным веществом

Оптическую активность измеряют с помощью приборов, называемых поляриметрами.

Явление оптической активности распространено среди органических веществ, особенно среди природных (гидрокси- и аминокислот, белков, углеводов, алкалоидов).

Оптическая активность большинства органических соединений обусловлена их строением.

Одной из причин возникновения оптической активности органических молекул является наличие в их структуре sp 3 -гибридизированного атома углерода, связанного с четырьмя разными заместителями. Такой атом углерода называется хиральным или асимметрическим. Часто для него применяют более общее название – хиральный центр. В структурных формулах асимметрический атом углерода принято обозначать звездочкой – С*:

Соединения, содержащие один асимметрический атом углерода, существуют в виде двух изомеров, относящихся друг к другу как предмет к своему зеркальному отображению. Такие изомеры называются энантиомерами .

Рис. 3.3. Модели энантиомерных молекул бромиодхлорметана

Для изображения пространственного строения оптических изомеров на плоскости могут быть использованы стереохимические формулы. Например, энантиомеры бутанола-2, изображенные с помощью стереохимических формул, имеют следующий вид:

Однако стереохимические формулы не всегда удобны для описания пространственного строения молекул. Поэтому чаше всего оптические изомеры изображают на плоскости с помошью проекционных формул Фишера. Например, так выглядят энантиомеры 2-бромбутана, изображаемые с помошью проекции Фишера.

Энантиомеры очень похожи друг на друга, но тем не менее не тождественны. Они имеют одинаковый состав и последовательность связывания атомов в молекуле, но отличаются друг от друга относительным расположением их в пространстве, т. е, конфигурацией. В том, что эти молекулы разные, легко убедиться при попытке наложения их моделей друг на друга.

Свойство молекул не совмещаться со своим зеркальным изображением называется хиральностью (от греч, cheir– рука), а также молекулы называют хиральными. Наглядным примером могут служить левая и правая руки, которые являются зеркальным отражением друг друга, но вместе с тем их нельзя совместить. Молекулы, которые совместимы со своим зеркальным изображением называют ахиральными.

Хиральность молекул является обязательным условием для проявления веществом оптической активности.

Как установить является ли молекула хиральной? Хиральность молекулы можно легко обнаружить путем построения модели молекулы и модели ее зеркального изображения с последующим их совмещением. Если модели не совмещаются – молекула хиральна, если совмещаются – ахиральна. Такой же вывод можно сделать и на основе стереохимических формул молекул по наличию ил и отсутствию элементов симметрии, так как причиной оптической активности органических соединений является их асимметрическое строение. Поскольку молекула представляет собой трехмерное образование, ее строение можно рассматривать сточки зрения симметрии геометрических фигур. Основным элементами симметрии являются плоскость, центр и ось симметрии. Если в молекуле отсутствует плоскость симметрии, то такая молекула хиральна.

Энантиомеры обладают одинаковыми физическими и химическими свойствами (температура кипения, температура плавления, растворимость, электропроводность и другие константы будут одни и те же), вращают плоскость поляризации поляризованного луча на один и тот же по величине угол, но имеются и различия.

Энантиомеры отличаются знаком вращения, один вращает плоскость поляризации поляризованного луча влево, другой – вправо; они с различной скоростью реагируют с другими хиральными соединениями, а также имеется различие в физиологическом действии. Например, лекарственный препарат левомицин – антибиотик широкого спектра действия. Если его эффективность принять за 100, то правовращающая форма составит только 2 % от эффективности левовращающсй формы.

Если молекула имеет один асимметрический атом, то она существует в виде двух изомеров, если же молекула имеет несколько асимметрических атомов углерода, то число возможных изомеров увеличивается. Число оптических изомеров определяют по формуле:

где N – число изомеров; п – число асимметрических атомов углерода.

Так при наличии в молекуле двух асимметрических атомов углерода число изомеров равно 2 2 = 4, трех – 2 3 = 8, четырех – 2 4 = 16 и т. д.

Например, бромяблочная кислота, содержащая два асимметрических атома углерода, существует в виде четырех стереоизомеров (I–IV).

Стереомеры I и II, а также III и IVотносятся друг к другу как предмет и его зеркальное изображение и являются энантиомерами.

Стереоизомеры 1 и III, 1 и IV, а также II и HI, Н и IV не являются зеркальными отображениями друг друга, они отличаются конфигурацией при одном из асимметрических атомов углерода. Такие стереоизомеры называют диастереомерами. В отличие от энантиомеров диастереомеры имеют различные физические и химические свойства.

Для соединений, содержащих два хиральных атома углерода, связанных с одинаковыми заместителями, общее число стереоизомеров уменьшается до трех. Например, винная кислота должна существовать в виде четырех стереоизомеров (2 2 = 4), а известно лишь три. Это обусловлено появлением у одного из стереоизомеров такого элемента, как плоскость симметрии.

Стереомеры 1 и II являются энантиомерами. Стереоизомер III (мезо-форма) является оптически неактивным. Молекула мезовинной кислоты ахиральна. Каждый энантиомер винной кислоты по отношению к мезо-форме является диастереомером.

Номенклатура оптических изомеров

В номенклатуре наряду с названием соединения указывают также конфигурацию и направление вращения плоскости поляризованного света. Последнее обозначают знаком (+) для правовращающего изомера или знаком (-) для левовращающего изомера.

Для обозначения конфигурации оптических изомеров существуют D,L- и R,S -стереохимические системы.

D,L-система обозначения конфигурации . Установить абсолютную конфигурацию молекул оказалось для химиков довод ьно сложной задачей. Впервые это удалось лишь в 1951 г. методом рентгеноструктур-ного анализа. До этого времени конфигурацию оптических изомеров устанавливали методом сравнения со специально выбранным стандартным веществом. Такая конфигурация получила название относительной. В 1906 г. русским ученым М.А. Розановым в качестве стандарта для установления относительной конфигурации был предложен глицериновый альдегид,

Для правовращающего изомера выбрали формулу Фишера, в которой гидроксильная группа у хирального атома углерода находится справа, а для левоврашаюшего – слева. Конфигурация правовращающего изомера обозначается буквой D а левоврашаюшего – L.

С использованием в качестве эталона сравнения глицеринового альдегида была разработана D,L-система стереохимической классификации хиральных соединений, т. е. отнесения соединений соответственно к D- или L-стереохимическому ряду

D,L-система главным образом применяется в ряду многоатомных спиртов, гидрокси-, аминокислот и углеводов:

Для соединений с несколькими асимметрическими атомами углерода, таких как α-пироксикислоты, α-аминокислоты, винные кислоты, конфигурацию условно определяют по верхнему асимметрическому атому углерода (по гндроксикислотному ключу), в то время как в молекуле углеводов конфигурацию устанавливают (условно) по нижнему асимметрическому атому углерода.

R,S-система обозначения конфигурации. D,L- система оказалась практически неприемлемой для соединений мало похожих на глицериновый альдегид. Поэтому R Каном, К. Ингольдом и В. Прелогом была предложена R,S- система обозначения абсолютной конфигурации оптических изомеров. R,S- система построена на определении старшинства заместителей у хирального центра.

Старшинство заместителей определяется величинами атомных номеров элементов. Чем больше атомный номер, тем старше заместитель. Например» в молекуле бромйодхлорметана старшинство заместителей уменьшается в ряду:

После установления старшинства заместителей модель молекулы ориентируют так, чтобы заместитель с наименьшим порядковым номером был направлен в сторону, противоположную глазу наблюдателя. Если старшинство трех остальных заместителей убывает по направлению часовой стрелки, то молекула имеет конфигурацию, обозначаемую буквой R (отлат, rectus – правый), а если старшинство заместителей убывает против часовой стрелки, конфигурацию обозначают буквой S (отлат. sinister–левый). Например, для молекулы бромйодхлорметана:

Рис 3,4. Определение конфигурации по R,S-системе для молекулы бромйодхлорметана

Рассмотрим определение старшинства заместителей и конфигурации для более сложных молекул на примере молочной кислоты (рис. 3.4). Уже по первому слою (8 O, б С, 1 Н, 6 С) становится понятно, что старшим заместителем является группа ОН, а младшим – водород. Для выяснения старшинства двух других заместителей СН^ и СООН с одинаковым атомным номером (6 С) по первому слою, необходимо рассмотреть второй слой. Сумма атомных номеров второго слоя СН 3 -группы= 1 + 1 + 1 = 3, а группы СООН = 8 + 8*2 = 24. Значит-СООН-группа старше группы –СН 3 Старшинство заместителей вокруг асимметрического атома углерода в молекуле молочной кислоты уменьшается в ряду: ОН > СООН > СН 3 > Н

Рис. 3.5. Определение конфигурации по R,S-системе для молочной кислоты

Рацематы. Смесь равных количеств энантиомеров оптически неактивна, ее называют рацемической смесью (рацематом). Рацематы отличаются от индивидуальных энантиомеров физическими свойствами, они могут иметь различную температуру плавления, растворимость; отличаются спектральными характеристиками.

На практике чаще приходится сталкиваться не с индивидуальными энантиомерами, а рацематами, которые образуются в результате химических реакций, протекающих с образованием хиральных молекул.

Для разделения рацематов на энантиомеры пользуются тремя методами:

1. Механический метод. В результате кристаллизации некоторых оптически активных соединений могут образовываться две формы кристаллов, похожих друг на друга как предмет и его зеркальное отображение. Их можно отделить под микроскопом препаративной иглой (механически).

2. Биохимический метод основан на том, что определенные виды микроорганизмов предпочитают одну из энантиомерных форм и поедают ее, вторая остается и может быть легко выделена.

3. Химический метод, В основе химического метода лежит перевод энантиомеров при помощи оптически активных реагентов в диа-стереомеры, которые уже отличаются друг от друга по физическим свойствам. Диастереомеры гораздо легче разделить.

Например, следует разделить рацемическую смесь двух кислот (А+ В), Для этого к смеси добавляют оптически активное основание (С). Между рацемической формой и оптически активным основанием протекает реакния

АС и ВС – это диастереомеры. Они обладают различной растворимостью и методом последовательной кристализации можно выделить два диастереомера отдельно.

Но так как АС и ВС образованы слабой органическом кислотой и основанием, то используют для их разложения минеральные кислоты.

Таким образом получают чистые энантиомеры А и В.

ГЕОМЕТРИЧЕСКАЯ ИЗОМЕРИЯ

Причиной возникновения геометрической изомерии является отсутствие свободного вращения вокруг σ-связи. Этот вид изомерии характерен для соединений, содержащих двойную связь, и для соединений алициклического ряда.

Геометрические изомеры это вещества, имеющие одинаковую молекулярную формулу, одинаковую последовательность связывания атомов в молекулах, но отличающиеся друг от друга различным расположением атомов или атомных групп в пространстве относительно плоскости двойной связи или плоскости цикла.

Причиной возникновения данного вида изомерии является невозможность свободного вращения вокруг двойной связи или σ-связей, образующих цикл.

Например, бутен-2 СН 3 –СН=СН–СН 3 может существовать в виде 2-х изомеров, которые различаются расположениями метильных групп в пространстве относительно плоскости двойной связи.

или 1,2-диметилциклопропан существует в виде двух изомеров, которые различаются расположением метильных групп в пространстве относительно плоскости цикла:

Для обозначения конфигурации геометрических изомеров используют цис-,транс-систему. Если одинаковые заместители расположены по одну сторону от плоскости двойной связи или цикла – конфигурацию обозначают цис-. если по разные стороны – транс-.

Для соединений, у которых при атомах углерода с двойной связью находятся различные заместители, применяют Z,E-систему обозначений.

Z,E-система является более обшей. Она применима к геометрическим изомерам с любым набором заместителей. В основе этой системы лежит старшинство заместителей, которое определяют у каждого атома углерода отдельно. Если старшие заместители из каждой пары расположены по одну сторону от двойной связи, конфигурация обозначается буквой Z(от нем. zusammen – вместе), если по разные стороны – буквой £(от нем. entgegen – напротив).

Так для 1-бром-1-хлорпропена возможно два изомера:

Старшим заместителем у одного атома углерода является метильная группа (заместители 1 Н и 6 СН 3). а у другого – атом брома (заместители 17 Сl и 35 Вr). В изомере 1 старшие заместители расположены по одну сторону от плоскости двойной связи, ему приписывают Z-конфигурацию, а изомеру II Е-конфигурацию (старшие заместители расположены по разные стороны плоскости двойной связи).

Геометрические изомеры имеют разные физические свойства (температуру плавления и кипения, растворимость и т. д.), спектральные характеристики и химические свойства. Такое различие в свойствах позволяет довольно легко установить их конфигурацию с помощью физических и химических методов.

Геометрические изомеры возникают, если свободное вращение атомов в молекуле ограничено вследствие наличия двойной связи. Примером такой пары изомеров могут служить малеиновая (12.23) и фумаровая (12.24) кислоты (цис- и транс- соответственно).

По химическому строению геометрические изомеры очень похожи, но они не являются зеркальными отображениями друг друга и не вращают плоскость поляризации света. Как правило, цис- и транс-изомеры значительно отличаются по физическим свойствам. Например, малеиновая кислота (12.23) плавится при 130 °С, величина ее рКа 1,9, она очень хорошо растворима в холодной воде (79 г на 100 мл); константы ее геометрического изомера - фумаровой кислоты (12.24) соответственно 287 °С, 3,0 и 0,7 г на 100 мл. Неудивительно, что геометрические изомеры обладают разными биологическими свойствами и поэтому очень важно при изучении химической формулы нового соединения учитывать все возможности существования изомерии такого типа.

Цис- и транс-изомеры можно легко разделить кристаллизацией или хроматографически. Общего метода для превращения одного изомера в другой не существует, однако при нагревании, как правило, образуется наиболее стабильный изомер, а под действием света - менее стабильный. Зрение человека зависит от превращения 11-цис-изомера ретиналя в 11-транс-форму под действием света. Как только возбуждающий луч света исчезает,
этот каротиноидный пигмент снова переходит в цис-форму, пре- рывая тем с&^шм идущий к мозгу импульс , Цис- и транс-изомеры существуют и у плоского циклопентанового кольца, представляющего собой как бы большую двойную связь. Хотя циклогексановое кольцо вообще не плоское, оно тем не менее достаточно плоское для образования цис- и трансизомеров. Так, существуют и доступны как цис- (12.25), так и транс- (12.26) формы диаминоциклогексана. Одна и та же молекула может образовывать и геометрические, и оптические изомеры. Например, транс-изомер (12.26) может быть разделен на (S,S) (12.27) и (R.R) (12.28) хиральные изомеры. Однако цис-изомер на хиральные формы разделен быть не может, так как в нем существует плоскость симметрии. У бензольного кольца нет геометрических изомеров, так как у каждого атома углерода кольца только один заместитель.

Цис- Транс- TpaHC-(S S) TpaHC-(R.R)

(12.25) (12.26) (12.27) (12.28)


Стереоизомеры 1,2-диаминоцинлогенсана

Иногда бывает трудно выбрать два из четырех заместителей при двойной связи для определения цис- или транс-конфигурации. Правило последовательности предписывает выбирать заместителей с наиболее тяжелыми атомами, при этом цис-форма обозначается буквой Z (от немецкого слова zusammen), а трансформа- буквой Е (entgegen). Иногда в названиях соединений, в которых геометрическая изомерия может проявиться многократно, заместитель, имеющий самый маленький номер (по правилу нумерации), обозначают буквой г, а обозначения с-(цис) и t-(транс) перед другими заместителями показывают их положение по отношению к г-заместителю.

Аналогично индол-3-илуксусной кислоте (4.82), стимулирующей рост растительных клеток, могут действовать и другие карбоновые кислоты, карбоксильная группа которых находится под углом к плоскости ароматического кольца. Геометрическая изомерия ограничивает возможность такого расположения двух заместителей, поэтому из коричных кислот активен только цис- изомер . У 2-фенилциклопропан-1- карбоновой и 1,2,3,4-тетрагидронафталиден-Гуксусной кислот также активны только цис-изомеры . На молекулярных моделях видно, что кольцо и карбоксильная группа в транс-изомере (неактивном) этих веществ лежат в одной плоскости, в то время как в цис-форме (активной) они некопланарны. Впервые указал на эту связь между некопланарностью и стимулирующей рост активностью Veidstra. Некопланарность может возникнуть и вследствие стерических препятствий. Так, бензойная кислота имеет плоскую форму и не активна, а 2,6-дихлорбензойная и 8-метил-1-нафтойная кислоты непланарны и биологически активны .

В аналогах ауксинов карбоксильная группа может быть заменена и на другие электроноакцепторные группы (-CN, -N02, -SO3H), при этом биологическая активность лишь незначительно уменьшается. О связи между структурой и действием в этой серии см. Koepfli, Thimann, Went (1938) и Veidstra

Геометрическая изомерия стероидов заслуживает специального рассмотрения. На формуле (12.29) приведена общая структура этой группы природных насыщенных соединений (показана нумерация атомов углерода и буквенные обозначения четырех циклов). В природных стероидах кольца В и С находятся в транс-сочленении, причем оба они закреплены в конформации кресла. В сердечных гликозидах сочленение циклов С и D имеет цис-конфигурацию, но в гормонах животных, стеринах и желчных кислотах - транс-сочленение. У большинства биологически активных стероидов кольца А и В находятся в транс-сочленении («5а»-ряд, называвшийся ранее «алло»). Каждое из колец в молекуле стероидов образует складки, что хорошо видно на боковой проекции формулы (12.30).


Обозначение «5а» говорит о том, что атом водорода в положении 5 находится ниже общей плоскости колец. Все заместители, расположенные ниже этой плоскости, обозначаются символом «а», а выше - символом показаны на формулах (12.34) и (12.35).


ния заместителей в пространстве, так и формы цикла. Например, циклогексан может существовать в трех конформациях: кресла (12.36), ванны (12.37) и скрученной (или полукресла) (12.38).

Форма кресла - наименее напряженная и поэтому для молекулы циклогексана наиболее предпочтительна, при этом каждый аксиальный атом водорода удален на 0,25 нм от других двух аксиальных атомов водорода, расположенных по эту же сторону цикла. Скрученная (или твист-) форма занимает промежуточное положение (между формой кресла и лодки), а самая напряженная - форма ванны. Последняя, однако, может быть стабилизирована двумя или более конденсированными циклами, содержащими соответствующие заместители. Молекула декагидронафталина (декалина) может существовать в виде двух устойчивых форм, структура которых была определена методом дифракции электронов, показавшим, что транс-форма (температура плавления -30 °С, температура кипения 117 °С при 100 мм рт. ст.) состоит из двух транс-конденсированных циклов в конформации кресла, а цис-форма (температура плавления -43 °С, температура кипения 124 °С при 100 мм рт. ст.) состоит из двух цис-конденсированных циклов в конформации кресла. Цис-форма переходит в транс-форму при повышенной температуре и в присутствии катализатора. Молекула декалина представляет собой пример геометрической изомерии относительно мостиковых атомов углерода, но каждый цикл остается конформационно мобильным.

Интерес представляет конформационный анализ связи -СО-Н-, определяющей структуру пептидов. В белках ее конформация всегда «вытянутая» (транс), хотя в пептидах, содержащих пролин, т. е. третичную амидную группу, достаточно велика доля равновесной «заслоненной» (цис) конформации (до 40%) . Во вторичных формамидах существует равновесная смесь «вытянутого» и «заслоненного» конформеров в соотношении 8: 92 в случае N-метилформамида (12.39, 12.40). Их существование установлено по наличию двух раздельных сигналов в спектрах ПМР. С увеличением объема заместителя при атоме азота доля «вытянутого» конформера возрастает, достигая 18% при замене метильной группы на трет-бутильную .

Цис-транс -изомерия или геометрическая изомерия - один из видов стереоизомерии : заключается в возможности расположения заместителей по одну или по разные стороны плоскости двойной связи или неароматического цикла. Все геометрические изомеры относятся к диастереомерам , так как не являются зеркальными отражениями друг друга. Цис - и транс -изомеры встречаются как среди органических соединений, так и среди неорганических. Понятия цис и транс не используются в случае конформеров , двух геометрических форм, легко переходящих друг в друга, вместо них используются обозначения «син» и «анти».

Обозначения «цис » и «транс » произошли из латыни, в переводе с этого языка цис означает «на одной стороне» , а транс - «на другой стороне» или «напротив». Термин «геометрическая изомерия» согласно ИЮПАК считается устаревшим синонимом цис -транс -изомерии .

Следует помнить, что цис-транс -номенклатура описывает относительное расположение заместителей, и не следует путать её с E,Z -номенклатурой, которая даёт абсолютное стереохимическое описание и применяется только к алкенам .

Органическая химия

Цис-транс -изомерией проявляют также и алициклические соединения , у которых заместители могут располагаться по одну или по разные стороны плоскости кольца. В качестве примера можно привести 1,2-дихлорциклогексан:

транс -1,2-дихлорциклогексан цис -1,2-дихлорциклогексан

Различие в физических свойствах

цис -2-пентен транс -2-пентен
цис -1,2-дихлорэтилен транс -1,2-дихлорэтилен
цис -бутендиовая кислота
(малеиновая кислота)
транс -бутендиовая кислота
(фумаровая кислота)


Олеиновая кислота Элаидиновая кислота

Отличия могут быть незначительными, как в случае температуры кипения алкенов с прямой цепью, таких как 2-пентен , цис -изомер которого кипит при 37 °C, а транс -изомер - при 36 °C . Разница между цис - и транс - становится ещё больше, если в молекуле есть поляризованные связи, как в 1,2-дихлорэтилене . Цис -изомер в данном случае кипит при 60,3 °C, а вот транс -изомер закипает при 47,5 °C . В случае цис -изомера эффект от двух полярных связей C-Cl складываются, образуя сильный молекулярный диполь , что даёт начало сильным межмолекулярным взаимодействиям (силам Кеезома), которые добавляются к дисперсионным силам и приводит к увеличению точки кипения. В транс -изомере, напротив, подобного не происходит, поскольку два момента C−Cl связей расположены друг напротив друга и аннулируют друг друга, не создавая дополнительный дипольный момент (хотя их квадрупольный момент совсем не равен нулю).

Два геометрических изомера бутендиовой кислоты настолько сильно отличаются по своим свойствам и реакционной способности, что даже получили разные названия: цис -изомер называется малеиновая кислота , а транс -изомер - фумаровая кислота . Ключевое свойство, определяющее относительную температуру кипения, - полярность молекулы, так как она усиливает межмолекулярные взаимодействия, тем самым повышая температуру кипения. В такой же манере симметрия определяет температуру плавления, поскольку симметричные молекулы лучше упаковываются в твёрдом состоянии, даже если полярность молекулы не меняется. Один из примеров такой зависимости - олеиновая и элаидиновая кислоты; олеиновая кислота, цис -изомер, имеет температуру плавления в 13,4 °C, и при комнатной температуре становится жидкостью, в то время как транс -изомер, элаидиновая кислота, обладает более высокой температурой плавления в 43 °C, поскольку более прямой транс -изомер имеет более плотную упаковку и остаётся твёрдым при комнатной температуре.

Цис-транс -изомеры дикарбоновых кислот различаются и по кислотности: малеиновая кислота (цис ) является значительно более сильной кислотой, чем фумаровая (транс ). Так, первая константа диссоциации для фумаровой кислоты pК a1 = 3,03, а для малеиновой кислоты pK a1 = 1,9. Наоборот, константа диссоциации второй карбоксильной группы для фумаровой кислоты больше, чем для малеиновой, а именно: для фумаровой кислоты pK a2 = 4,44, а для малеиновой кислоты pK a2 = 6,07. Благодаря пространственной близости карбоксильных групп в цис -форме увеличивается склонность водорода к ионизации, поэтому первая константа малеиновой кислоты оказывается больше. Однако второму протону труднее преодолеть притяжение двух сближенных карбоксильных групп в цис -изомере, поэтому вторая константа диссоциации малеиновой кислоты меньше, чем у фумаровой . Аналогичный принцип действует и для алициклических дикарбоновых кислот, однако с увеличением размера кольца следует также учитывать влияние неплоской формы цикла .

Вицинальная константа ядерной спин-спиновой связи (3 J HH), измеряемая при помощи ЯМР-спектроскопии , больше для транс -изомеров (диапазон: 12-18 Гц; в среднем: 15 Гц), чем для цис -изомеров (диапазон: 0-12 Гц; в среднем: 8 Гц) .

Стабильность

Как правило для ациклических систем транс цис . Причина этого обычно заключается в усилении нежелательных стерических взаимодействиях близко расположенных заместителей в цис -изомере. По этой же причине удельная теплота сгорания транс -изомеров ниже чем у цис , что указывает на большую термодинамическую стабильность . Исключением из этого правила являются 1,2-дифторэтилен, 1,2-дифтордиазен (FN=NF), 1-бромпропен-1 и несколько других галоген- и кислород-замещённых этиленов . В данном случае цис -изомер оказывается более стабильным, чем транс -изомер поскольку между такими заместителями преобладают не силы отталкивания, а силы притяжения (типа сил Лондона). К тому же благодаря относительно небольшому объёму заместителей не возникает стерических затруднений . Из 1,2-дигалогенэтиленов только у 1,2-дийодэтилена транс-изомер стабильнее, чем цис -изомер, поскольку из-за большого радиуса атомы йода испытывают сильное пространственное взаимодействие, если находятся по одну сторону двойной связи .

Взаимопревращение изомеров

Геометрические изомеры, различие которых связано с положением заместителей вокруг двойной связи, отличаются от стереоизомерных форм иного типа - конформеров . Раздельное существование цис - и транс -изомеров в сущности возможно лишь благодаря высокому энергетическому барьеру вращения вокруг двойной связи, что делает возможным раздельное существование цис - и транс -изомеров, в то время как конформеры существуют только в виде равновесной смеси. Величина барьера вращения вокруг двойной связи в простых алкенах составляет 250-270 кДж/моль. Однако, если поставить с одной стороны сильные доноры электронов (-SR), а с другой - группы, сильные акцепторы электронов (-CN, -COC 6 H 5), поляризовав таким образом двойную связь, то это приведёт к существенному снижению барьера вращения. Барьер вращения вокруг поляризованной таким образом связи может быть снижен до 60-100 кДж/моль. Низкие энергетические барьеры, когда энергетическая разница между цис-транс -изомерами и конформерами сглаживается, обнаружены для аминопроизводных ацетоуксусного эфира и енаминокетонов. Показано, что в таких системах положение равновесия зависит от природы растворителя. Так, енаминокетоны в неполярных растворителях на 100 % существуют в цис -форме, стабилизированной внутренней водородной связью, а в полярных растворителей появляется до 50 % транс -формы .

E,Z -номенклатура

Система обозначений цис -транс хорошо применима только для именования изомерных алкенов с двумя разными видами заместителей при двойной связи, в сложных молекулах такая номенклатура становится слишком неопределённой. В этих случаях используют разработанную ИЮПАК E ,Z -систему обозначений, которая однозначно определяет название соединений для всех возможных случаев, а потому особенно полезна для именования три- и тетразамещённых алкенов. Такая система позволяет избежать путаницы касательно того какие группы следует считать цис - или транс - по отношению к друг другу.

Если две старшие группы расположены по одну сторону двойной связи, то есть находятся в цис -положении друг к другу, то такое вещество называют Z -изомером (от нем. zusammen - вместе). Когда же старшие группы расположены по разные стороны двойной связи (в транс -ориентации), то такой изомер называют E -изомером (от нем. entgegen - напротив). Порядок старшинства групп и атомов определяется по правилам Кана - Ингольда - Прелога . Для каждого из двух атомов в двойной связи необходимо определить старшинство каждого заместителя. Если оба старших заместителя расположены по одну сторону от плоскости π-связи , то такую конфигурацию обозначают символом Z , если же эти группы находятся по разные стороны от плоскости π-связи, то конфигурацию обозначают символом E .

Следует отметить, что цис /транс и E ,Z -номенклатуры опираются на сравнение разных заместителей алкенов, поэтому Z -изомер не всегда соответствует цис -изомеру, а E -изомер - транс -изомеру. Например, транс -2-хлорбутен-2 (две метильных группы C1 и C4, на главной цепи бутена-2а находятся в транс -ориентации) является (Z )-2-хлорбутеном-2 (хлор старше, чем метил, который в свою очередь старше водорода, поэтому хлор и C4-метил рассматриваются как расположенные вместе).

В неорганической химии

Цис транс -изомерия встречается и в неорганических соединениях, в первую очередь в диазенах и комплексных соединениях .

Диазены

Диазены (и схожие с ними дифосфены) проявляют цис-транс- изомерию. Как и в случае органических соединений, цис -изомер более реакционноспособен, только он способен восстанавливать алкены и алкины до алканов . Транс -изомер, сближаясь с алкеном, не может выстроить свои атомы водорода в линию для эффективного восстановления алкена, а цис -изомер благодаря соответствующей форме успешно справляется с этой задачей.

транс -диазен цис -диазен

Комплексные соединения

Неорганические координационные соединения с октаэдрической или плоской квадратной геометрией также подразделяются на цис -изомеры, в которых одинаковые лиганды расположены рядом, и транс -изомеры, в которых лиганды отстоят друг от друга.

Например, два геометрических изомера плоского квадратного строения существуют для Pt(NH 3) 2 Cl 2 , феномен, который Альфред Вернер объяснил в 1893 году. Цис -изомер с полным названием цис -дихлородиамминплатина(II) обладает противоопухолевой активностью, что было продемонстрировано Барнеттом Розенбергом в 1969 году. Сейчас это вещество известно в химиотерапии под коротким названием цисплатин . Транс -изомер (трансплатин), напротив, не обладает какой-либо лекарственной активностью. Каждый из этих изомеров можно синтезировать, опираясь на транс-эффект , что позволяет получить преимущественно нужный изомер.

цис - + и транс - +

Для октаэдрических комплексов с формулой MX 4 Y 2 тоже существуют два изомера. (Здесь M - атом металла, а X и Y - лиганды разных видов.) В цис -изомере два лиганда Y примыкают друг к другу под углом 90°, как и показано для атомов хлора в цис - + на левой картинке. В транс -изомере, показанном справа, два атома хлора расположены на противоположных концах диагонали, проходящей через центральный атом кобальта.

Схожий тип изомерии октаэдральных комплексов состава MX 3 Y 3 - это гран-ос -изомерия, или гранево-осевая изомерия, когда некоторое количество лигандов оказываются в цис - или транс -положении друг к другу. В гран -изомерах лиганды одного типа занимают вершины треугольной грани октаэдра, а в ос -изомерах эти же лиганды находятся в трёх соседних позициях так, что два лиганда оказываются по разные стороны от центрального атома и на одной оси с ним



Публикации по теме