Геометрические цис изомеры имеют. Геометрическая изомерия

Причиной возникновения геометрической изомерии является от­сутствие свободного вращения вокруг σ-связи. Этот вид изомерии ха­рактерен для соединений, содержащих двойную связь, и для соедине­ний алициклического ряда.

Геометрические изомеры это вещества, имеющие одинаковую мо­лекулярную формулу, одинаковую последовательность связывания атомов в молекулах, но отличающиеся друг от друга различным рас­положением атомов или атомных групп в пространстве относительно плоскости двойной связи или плоскости цикла.

Причиной возникновения данного вида изомерии является невоз­можность свободного вращения вокруг двойной связи или σ-связей, образующих цикл.

Например, бутен-2 СН 3 -СН=СН-СН 3 может существовать в виде двух изомеров, которые различаются расположениями метильных групп в пространстве относительно плоскости двойной связи.

или 1,2-диметилциклопропан существует в виде двух изомеров, кото­рые различаются расположением метильных групп в пространстве от­носительно плоскости цикла:

Для обозначения конфигурации геометрических изомеров исполь­зуют цис-, транс-систему. Если одинаковые заместители расположены по одну сторону от плоскости двойной связи или цикла - конфи­гурацию обозначают цис-. если по разные стороны - транс-.

КОНФОРМАЦИОННАЯ ИЗОМЕРИЯ

Конформационная (поворотная) изомерия обусловлена враще­нием атомов или атомных групп вокруг одной или нескольких про­стых σ-связей. В результате вращения вокруг С-С-связей молеку­лы могут иметь различные пространственные формы, которые назы­вают конформациями.

Например, молекула этана вследствие вращения вокруг углерод- углеродной связи может принимать бесконечное множество конфор­маций. каждая из которых характеризуется определенным значением потенциальной энергии. Две крайние конформации называют засло­ненной и заторможенной.

В заслоненной конформации этана атомы водорода метильных групп, если смотреть вдоль связи углерод-углерод, расположены друг за другом. В заторможенной - атомы водорода одной метальной груп­пы максимально удалены от атомов водорода другой. Между засло­ненной и заторможенной конформацией молекула в процессе враще­ния принимает множество скошенных конформаций.



Каждая из конформаций молекулы этана характеризуется различ­ной потенциальной энергией. Заслоненная конформация имеет мак­симальную энергию, а заторможенная - минимальную.

Заторможенная конформация, в которой метильные группы (объем­ные заместители) максимально удалены друг от друга, получила название анти-конформации. Другая заторможенная конформация называется гош-конформацией.

Заторможенная гош-конформация обладает несколько большей потенциальной энергией (за счет метил-метильного взаимодействия), чем анти-конформация (в ней взаимодействие между метилами вооб­ще отсутствует).

Конформации с наименьшим запасом энергии называют конфор- мерами или конформационными (поворотными) изомерами.

Так, н-бутан при 25 °С существует примерно на 70 % в форме анти- конформера и на 30 % гош-конформера.

В отличие от конфигурационных изомеров, конформеры превраща­ются друг в друга без разрыва химических связей и не поддаются разделе­нию. Они обнаруживаются только физико-химическими методами.

Пространственные изомеры (стереоизомеры) имеют одинаковый качественный и количественный состав и одинаковый порядок связывания атомов (химическое строение), но разное пространственное расположение атомов в молекуле.

Выделяют два вида пространственной изомерии: оптическая и геометрическая.

Оптическая изомерия

В оптической изомерии различные фрагменты молекул располагаются по-разному относительно некоторого атома, т.е. имеют различную конфигурацию. Например:

Такие молекулы не являются идентичными, они относятся друг к другу как предмет и его зеркальное отображение и называются энантиомерами.

Энантиомеры обладают свойствами хиральности . Простейший случай хиральности обусловлен наличием в молекуле центра хиральности (хирального центра), которым может служить атом, содержащий четыре различных заместителя. У такого атома отсутствуют элементы симметрии. В связи с этим его также называют асимметрическим.

Чтобы установить, является ли молекула хиральной, необходимо построить ее модель, модель ее зеркального изображения (рис. 3.1, а) и выяснить, совмещаются ли они в пространстве. Если не совмещаются - молекула хиральна (рис. 3.1, б), если совмещаются - ахиральна.

Рис. 3.1.

Все химические свойства энантиомеров идентичны. Одинаковы и их физические свойства за исключением оптической активности: одна форма вращает плоскость поляризации света влево , другая - на тот же по величине угол вправо .

Смесь равных количеств оптических антиподов ведет себя как индивидуальное химическое соединение, лишенное оптической активности и сильно отличающееся по физическим свойствам от каждого из антиподов. Такое вещество называется рацемической смесью , или рацематом.

При всех химических превращениях, при которых образуются новые асимметричные атомы углерода, всегда получаются рацематы. Существуют специальные приемы разделения рацематов на оптически активные антиподы.

В случае наличия в молекуле нескольких асимметрических атомов возможна ситуация, когда пространственные изомеры не будут оптическими антиподами. Например:


Пространственные изомеры, не являющиеся энантиомерами по отношению друг к другу, называются диастереомерами.

Частный случай диастереомеров - геометрические (цис- траис-) изомеры.

Геометрическая изомерия

Геометрическая (цис-транс-) изомерия свойственна соединениям, содержащим двойные связи (С=С, C=N и др.), а также неароматическим циклическим соединениям и обусловлена невозможностью свободного вращения атомов вокруг двойной связи или в цикле. Заместители в геометрических изомерах могут быть расположены по одну сторону плоскости двойной связи или цикла - ^wc-положение, либо по разные стороны - тирш/с-положение (рис. 3.2).


Рис. 3.2. Дис-изомер (а) и транс -изомер (б)

Геометрические изомеры обычно существенно различаются по физическим свойствам (температурам кипения и плавления, растворимости, дипольным моментам, термодинамической устойчивости и др.)

  • Термин «хиральность» означает, что два предмета находятся в такомотношении друг к другу, как левая и правая руки (от греч. chair - рука),т.е. представляют собой зеркальные изображения, не совпадающие при попытке совместить их в пространстве.

Цис-транс -изомерия или геометрическая изомерия - один из видов стереоизомерии : заключается в возможности расположения заместителей по одну или по разные стороны плоскости двойной связи или неароматического цикла. Все геометрические изомеры относятся к диастереомерам , так как не являются зеркальными отражениями друг друга. Цис - и транс -изомеры встречаются как среди органических соединений, так и среди неорганических. Понятия цис и транс не используются в случае конформеров , двух геометрических форм, легко переходящих друг в друга, вместо них используются обозначения «син» и «анти».

Обозначения «цис » и «транс » произошли из латыни, в переводе с этого языка цис означает «на одной стороне» , а транс - «на другой стороне» или «напротив». Термин «геометрическая изомерия» согласно ИЮПАК считается устаревшим синонимом цис -транс -изомерии .

Следует помнить, что цис-транс -номенклатура описывает относительное расположение заместителей, и не следует путать её с E,Z -номенклатурой, которая даёт абсолютное стереохимическое описание и применяется только к алкенам .

Органическая химия

Цис-транс -изомерией проявляют также и алициклические соединения , у которых заместители могут располагаться по одну или по разные стороны плоскости кольца. В качестве примера можно привести 1,2-дихлорциклогексан:

транс -1,2-дихлорциклогексан цис -1,2-дихлорциклогексан

Различие в физических свойствах

цис -2-пентен транс -2-пентен
цис -1,2-дихлорэтилен транс -1,2-дихлорэтилен
цис -бутендиовая кислота
(малеиновая кислота)
транс -бутендиовая кислота
(фумаровая кислота)


Олеиновая кислота Элаидиновая кислота

Отличия могут быть незначительными, как в случае температуры кипения алкенов с прямой цепью, таких как 2-пентен , цис -изомер которого кипит при 37 °C, а транс -изомер - при 36 °C . Разница между цис - и транс - становится ещё больше, если в молекуле есть поляризованные связи, как в 1,2-дихлорэтилене . Цис -изомер в данном случае кипит при 60,3 °C, а вот транс -изомер закипает при 47,5 °C . В случае цис -изомера эффект от двух полярных связей C-Cl складываются, образуя сильный молекулярный диполь , что даёт начало сильным межмолекулярным взаимодействиям (силам Кеезома), которые добавляются к дисперсионным силам и приводит к увеличению точки кипения. В транс -изомере, напротив, подобного не происходит, поскольку два момента C−Cl связей расположены друг напротив друга и аннулируют друг друга, не создавая дополнительный дипольный момент (хотя их квадрупольный момент совсем не равен нулю).

Два геометрических изомера бутендиовой кислоты настолько сильно отличаются по своим свойствам и реакционной способности, что даже получили разные названия: цис -изомер называется малеиновая кислота , а транс -изомер - фумаровая кислота . Ключевое свойство, определяющее относительную температуру кипения, - полярность молекулы, так как она усиливает межмолекулярные взаимодействия, тем самым повышая температуру кипения. В такой же манере симметрия определяет температуру плавления, поскольку симметричные молекулы лучше упаковываются в твёрдом состоянии, даже если полярность молекулы не меняется. Один из примеров такой зависимости - олеиновая и элаидиновая кислоты; олеиновая кислота, цис -изомер, имеет температуру плавления в 13,4 °C, и при комнатной температуре становится жидкостью, в то время как транс -изомер, элаидиновая кислота, обладает более высокой температурой плавления в 43 °C, поскольку более прямой транс -изомер имеет более плотную упаковку и остаётся твёрдым при комнатной температуре.

Цис-транс -изомеры дикарбоновых кислот различаются и по кислотности: малеиновая кислота (цис ) является значительно более сильной кислотой, чем фумаровая (транс ). Так, первая константа диссоциации для фумаровой кислоты pК a1 = 3,03, а для малеиновой кислоты pK a1 = 1,9. Наоборот, константа диссоциации второй карбоксильной группы для фумаровой кислоты больше, чем для малеиновой, а именно: для фумаровой кислоты pK a2 = 4,44, а для малеиновой кислоты pK a2 = 6,07. Благодаря пространственной близости карбоксильных групп в цис -форме увеличивается склонность водорода к ионизации, поэтому первая константа малеиновой кислоты оказывается больше. Однако второму протону труднее преодолеть притяжение двух сближенных карбоксильных групп в цис -изомере, поэтому вторая константа диссоциации малеиновой кислоты меньше, чем у фумаровой . Аналогичный принцип действует и для алициклических дикарбоновых кислот, однако с увеличением размера кольца следует также учитывать влияние неплоской формы цикла .

Вицинальная константа ядерной спин-спиновой связи (3 J HH), измеряемая при помощи ЯМР-спектроскопии , больше для транс -изомеров (диапазон: 12-18 Гц; в среднем: 15 Гц), чем для цис -изомеров (диапазон: 0-12 Гц; в среднем: 8 Гц) .

Стабильность

Как правило для ациклических систем транс цис . Причина этого обычно заключается в усилении нежелательных стерических взаимодействиях близко расположенных заместителей в цис -изомере. По этой же причине удельная теплота сгорания транс -изомеров ниже чем у цис , что указывает на большую термодинамическую стабильность . Исключением из этого правила являются 1,2-дифторэтилен, 1,2-дифтордиазен (FN=NF), 1-бромпропен-1 и несколько других галоген- и кислород-замещённых этиленов . В данном случае цис -изомер оказывается более стабильным, чем транс -изомер поскольку между такими заместителями преобладают не силы отталкивания, а силы притяжения (типа сил Лондона). К тому же благодаря относительно небольшому объёму заместителей не возникает стерических затруднений . Из 1,2-дигалогенэтиленов только у 1,2-дийодэтилена транс-изомер стабильнее, чем цис -изомер, поскольку из-за большого радиуса атомы йода испытывают сильное пространственное взаимодействие, если находятся по одну сторону двойной связи .

Взаимопревращение изомеров

Геометрические изомеры, различие которых связано с положением заместителей вокруг двойной связи, отличаются от стереоизомерных форм иного типа - конформеров . Раздельное существование цис - и транс -изомеров в сущности возможно лишь благодаря высокому энергетическому барьеру вращения вокруг двойной связи, что делает возможным раздельное существование цис - и транс -изомеров, в то время как конформеры существуют только в виде равновесной смеси. Величина барьера вращения вокруг двойной связи в простых алкенах составляет 250-270 кДж/моль. Однако, если поставить с одной стороны сильные доноры электронов (-SR), а с другой - группы, сильные акцепторы электронов (-CN, -COC 6 H 5), поляризовав таким образом двойную связь, то это приведёт к существенному снижению барьера вращения. Барьер вращения вокруг поляризованной таким образом связи может быть снижен до 60-100 кДж/моль. Низкие энергетические барьеры, когда энергетическая разница между цис-транс -изомерами и конформерами сглаживается, обнаружены для аминопроизводных ацетоуксусного эфира и енаминокетонов. Показано, что в таких системах положение равновесия зависит от природы растворителя. Так, енаминокетоны в неполярных растворителях на 100 % существуют в цис -форме, стабилизированной внутренней водородной связью, а в полярных растворителей появляется до 50 % транс -формы .

E,Z -номенклатура

Система обозначений цис -транс хорошо применима только для именования изомерных алкенов с двумя разными видами заместителей при двойной связи, в сложных молекулах такая номенклатура становится слишком неопределённой. В этих случаях используют разработанную ИЮПАК E ,Z -систему обозначений, которая однозначно определяет название соединений для всех возможных случаев, а потому особенно полезна для именования три- и тетразамещённых алкенов. Такая система позволяет избежать путаницы касательно того какие группы следует считать цис - или транс - по отношению к друг другу.

Если две старшие группы расположены по одну сторону двойной связи, то есть находятся в цис -положении друг к другу, то такое вещество называют Z -изомером (от нем. zusammen - вместе). Когда же старшие группы расположены по разные стороны двойной связи (в транс -ориентации), то такой изомер называют E -изомером (от нем. entgegen - напротив). Порядок старшинства групп и атомов определяется по правилам Кана - Ингольда - Прелога . Для каждого из двух атомов в двойной связи необходимо определить старшинство каждого заместителя. Если оба старших заместителя расположены по одну сторону от плоскости π-связи , то такую конфигурацию обозначают символом Z , если же эти группы находятся по разные стороны от плоскости π-связи, то конфигурацию обозначают символом E .

Следует отметить, что цис /транс и E ,Z -номенклатуры опираются на сравнение разных заместителей алкенов, поэтому Z -изомер не всегда соответствует цис -изомеру, а E -изомер - транс -изомеру. Например, транс -2-хлорбутен-2 (две метильных группы C1 и C4, на главной цепи бутена-2а находятся в транс -ориентации) является (Z )-2-хлорбутеном-2 (хлор старше, чем метил, который в свою очередь старше водорода, поэтому хлор и C4-метил рассматриваются как расположенные вместе).

В неорганической химии

Цис транс -изомерия встречается и в неорганических соединениях, в первую очередь в диазенах и комплексных соединениях .

Диазены

Диазены (и схожие с ними дифосфены) проявляют цис-транс- изомерию. Как и в случае органических соединений, цис -изомер более реакционноспособен, только он способен восстанавливать алкены и алкины до алканов . Транс -изомер, сближаясь с алкеном, не может выстроить свои атомы водорода в линию для эффективного восстановления алкена, а цис -изомер благодаря соответствующей форме успешно справляется с этой задачей.

транс -диазен цис -диазен

Комплексные соединения

Неорганические координационные соединения с октаэдрической или плоской квадратной геометрией также подразделяются на цис -изомеры, в которых одинаковые лиганды расположены рядом, и транс -изомеры, в которых лиганды отстоят друг от друга.

Например, два геометрических изомера плоского квадратного строения существуют для Pt(NH 3) 2 Cl 2 , феномен, который Альфред Вернер объяснил в 1893 году. Цис -изомер с полным названием цис -дихлородиамминплатина(II) обладает противоопухолевой активностью, что было продемонстрировано Барнеттом Розенбергом в 1969 году. Сейчас это вещество известно в химиотерапии под коротким названием цисплатин . Транс -изомер (трансплатин), напротив, не обладает какой-либо лекарственной активностью. Каждый из этих изомеров можно синтезировать, опираясь на транс-эффект , что позволяет получить преимущественно нужный изомер.

цис - + и транс - +

Для октаэдрических комплексов с формулой MX 4 Y 2 тоже существуют два изомера. (Здесь M - атом металла, а X и Y - лиганды разных видов.) В цис -изомере два лиганда Y примыкают друг к другу под углом 90°, как и показано для атомов хлора в цис - + на левой картинке. В транс -изомере, показанном справа, два атома хлора расположены на противоположных концах диагонали, проходящей через центральный атом кобальта.

Схожий тип изомерии октаэдральных комплексов состава MX 3 Y 3 - это гран-ос -изомерия, или гранево-осевая изомерия, когда некоторое количество лигандов оказываются в цис - или транс -положении друг к другу. В гран -изомерах лиганды одного типа занимают вершины треугольной грани октаэдра, а в ос -изомерах эти же лиганды находятся в трёх соседних позициях так, что два лиганда оказываются по разные стороны от центрального атома и на одной оси с ним

II.1. Конформации (поворотная изомерия)

Переход от простейшего органического углеводорода - метана, к его ближайшему гомологу - этану ставит проблемы пространственного строения, для решения которых недостаточно знать рассмотренные в разделе параметры. В самом деле, не меняя ни валентных углов, ни длин связей, можно представить себе множество геометрических форм молекулы этана, отличающихся друг от друга взаимным поворотом углеродных тетраэдров вокруг соединяющей их связи С-С. В результате такого вращения возникают поворотные изомеры (конформеры) . Энергия различных конформеров неодинакова, но энергетический барьер, разделяющий различные поворотные изомеры, для большинства органических соединений невелик. Поэтому при обычных условиях, как правило, нельзя зафиксировать молекулы в одной строго определенной конформации: обычно в равновесии сосуществуют несколько легко переходящих друг в друга поворотных форм.

Способы графического изображения конформаций и их номенклатура таковы. Рассмотрение начнем с молекулы этана. Для нее можно предвидеть существоввание двух максимально различающихся по энергии конформаций. Они изображены ниже в виде перспективных проекций (1) ("лесопильные козлы"), боковых проекций (2) и формул Ньюмена (3).

В перспективной проекции (1а, 1б) связь С-С надо представить себе уходящей вдаль; стоящий слева углеродный атом приближен к наблюдателю, стоящий справа - удален от него.

В боковой проекции (2а, 2б) четыре Н-атома лежат в плоскости чертежа; атомы углерода на самом деле несколько выходят из этой плоскости, но обычно упрощенно считают их также лежащими в плоскости чертежа. "Жирные" клиновидные связи утолщением клина показывают на выход из плоскости по направлению к наблюдателю того атома, к которому обращено утолщение. Пунктирные клиновидные связи отмечают удаление от наблюдателя.

В проекции Ньюмена (3а, 3б) молекулу рассматривают вдоль связи С-С (в направлении, указанном стрелкой на формулах 1а,б). Три линии, расходящиеся под углом 120 о из центра круга, обозначают связи ближайшего к наблюдателю углеродного атома; линии, "высовывающиеся" из-за круга - связи удаленного углеродного атома.

Изображенную слева конформацию называют заслоненной : название это напоминает о том, что атомы водорода обеих СН 3 -групп находятся друг против друга. Заслоненная конформация имеет повышенную внутреннюю энергию, и поэтому невыгодна. Конформацию, изображенную справа, называют заторможенной , подразумевая, что свободное вращение вокруг связи С-С "тормозится" в этом положении, т.е. молекула существует преимущественно в этой конформации.

Минимум энергии, необходимый для полного вращения молекулы вокруг определенной связи называется барьером вращения для данной связи. Барьер вращения в молекуле, подобной этану, может быть выражен через изменение потенциальной энергии молекулы как функции изменения двугранного (торсионного) угла системы. Двугранный угол (обозначаемый тау) изображен на рисунке, приведенном ниже:

Энергетический профиль вращения вокруг связи С-С в этане показан на следующем рисунке. Вращение "заднего" атома углерода изображено изменением двугранного угла между двумя показанными атомами водорода. Для простоты остальные атомы водорода опущены. Барьер вращения, разделяющий две формы этана, составляет только 3 ккал/моль (12.6 кДж/моль). Минимумы кривой потенциальной энергии соответствуют заторможенным конформациям, максимумы - заслоненным. Поскольку при комнатной температуре энергия некоторых столкновений молекул может достигать 20 ккал/моль (около 80 кДж/моль), то этот барьер в 12.6 кДж/моль легко преодолевается и вращение в этане рассматривают как свободное.

Подчеркнем, что каждая точка на кривой потенциальной энергии соответствует определенной конформации. Точки, соответствующие минимумам, отвечают конформационным изомерам, то есть преобладающим компонентам в смеси всех возможных конформаций .

С усложнением молекулы число возможных заметно отличающихся по энергии конформаций возрастает. Так, для н -бутана можно изобразить уже шесть конформаций, отличающихся взаимным расположением СН 3 -групп, т.е. поворотом вокруг центральной связи С-С. Ниже конформации н-бутана изображены в виде проекций Ньюмена. Изображенные слева (заслоненные) конформации энергетически невыгодны, практически реализуются лишь заторможенные.

Различные заслоненные и заторможенные конформации бутана неодинаковы по энергии. Соответствующие энергии всех конформаций, обрпзующихся при вращении вокруг центральной С-С связи, представлены ниже:

По мере усложнения молекулы число возможных конфомаций возрастает.

Итак, конформации - это различные неидентичные пространственные формы молекулы, имеющие определенную конфигурацию. Конформеры - это стереоизомерные структуры, находящиеся в подвижном равновесии и способные к взаимопревращению путем вращения вокруг простых связей.

Иногда барьер таких превращений становится достаточно высоким, чтобы разделить стереоизомерные формы (пример - оптически активные дифенилы; ). В таких случаях говорят уже не о конформерах, а о реально существующих стереоизомерах .

II.2. Геометрическая изомерия

Важное следствие жесткости двойной связи (отсутствия вращения вокруг нее) - существование геометрических изомеров . Самые распространенные из них - это цис-транс-изомеры соединений этиленового ряда, содержащих у ненасыщенных атомов неодинаковые заместители. Простейшим примером могут служить изомеры бутена-2.

Геометрические изомеры имеют одинаковое химическое строение (одинаковый порядок химической связи), различаясь по пространственному расположению атомов, по конфигурации . Это различие и создает разницу в физических (а также химических свойствах). Геометрические изомеры, в отличие от конформеров, могут быть выделены в чистом виде и существуют как индивидуальные, устойчивые вещества. Для их взаимного превращения необходима обычно энергия порядка 125-170 кДж/моль (30-40 ккал/моль). Эту энергию можно сообщить нагреванием или облучением.

В простейших случаях номенклатура геометрических изомеров не представляет затруднений: цис- формами называют геометрические изомеры, у которых одинаковые заместители лежат по одну сторону от плоскости пи-связи, транс- изомеры имеют одинаковые заместители на разных сторонах от плоскости пи-связи. В более сложных случаях применяется Z,E-номенклатура . Ее главный принцип: для обозначения конфигурации указывают цис- (Z, от немецкого Zusammen - вместе) или транс- (Е, от немецкого Entgegen - напротив) расположение старших заместителей при двойной связи.

В Z,E-системе старшими считаются заместители с большим атомным номером. Если атомы, непосредственно связанные с ненасыщенными углеродами, одинаковы, то переходят ко "второму слою", в случае необходимости - к "третьему слою" и т.д.

Рассмотрим применение правил Z,E-номенклатуры на двух примерах.

I II

Начнем с формулы I, где все решается атомами "первого слоя". Расставив их атомные номера, получим, что старшие заместители каждой пары (бром в верхней части формулы и азот в нижней) находятся в транс -положении, отсюда следует стереохимические обозначение Е:

Е-1-бром-1-хлор-2-нитроэтен

Для определения стереохимического обозначения структуры II необходимо искать различие в "высших слоях". По первому слою группы СН 3 , С 2 Н 5 , С 3 Н 7 не отличаются. Во втором слое у группы СН 3 сумма атомных номеров равна трем (три атома водорода), у групп С 2 Н 5 и С 3 Н 7 - по 8. Значит, группа СН 3 не рассматривается - она младше двух других. Таким образом, старшие группы - это С 2 Н 5 и С 3 Н 7 , он находятся в цис -положении; стереохимические обозначение Z.

Z-3-метилгептен-3

Если бы понадобилось определить, какая группа старше - С 2 Н 5 или С 3 Н 7 , пришлось бы перейти к атомам "третьего слоя", сумма атомных номеров в этом слое для обеих групп оказались бы соответственно равными 3 и 8, т.е. С 3 Н 7 старше, чем С 2 Н 5 . В более сложных случаях определения старшинства надо учитывать дополнительные условия, как-то: атом, связанный двойной связью, считается дважды, связанный тройной - трижды; из числа изотопов старше более тяжелый (дейтерий старше водорода) и некоторые другие.

Отметим, что обозначения Z не является синонимами цис- обозначений, как и обозначения Е не всегда соответствуют расположению транс- , например:

цис- 1,2-дихлорпропен-1 цис- 1,2-дихлор-1-бромпропен-1

Z-1,2-дихлорпропен-1 Е-1,2-дихлор-1-бромпропен-1

Контрольные задачи

1. Бомбикол - феромон (половой аттрактант) тутового шелкопряда - представляет собой E-10-Z-12-гексадекадиенол-1. Изобразите его структурную формулу.

2. Назовите по Z,E-номенклатуре следующие соединения:

II.3. Оптическая изомерия (энантиомерия)

Среди органических соединений встречаются вещества, способные вращать плоскость поляризаации света. Это явление называют оптической активностью, а соответствующие вещества - оптически активными . Оптически активные вещества встречаются в виде пар оптических антиподов - изомеров, физические и химические свойства которых в обычных условиях одинаковы, за исключением одного - знака вращения плоскости поляризации. (Если один из оптических антиподов имеет, например, удельное вращение [ПРИМ.1] +20 о, то другой - удельное вращение -20 о).

II.4. Проекционные формулы

Для условного изображения асимметрического атома на плоскости пользуются проекционными формулами Э.Фишера . Их получают, проецируя на плоскость атомы, с которыми связан асимметрический атом. При этом сам асимметрический атом, как правило, опускают, сохраняя лишь перекрещивающиеся линии и символы заместителей. Чтобы помнить о пространственном расположении заместителей, часто сохраняют в проекционных формулах прерывистую вертикальную линию (верхний и нижний заместитель удалены за плоскость чертежа), однако часто этого не делают. Ниже приведены различные способы записи проекционной формулы, отвечающей левой модели на предыдущем рисунке:

Приведем несколько примеров проекционных формул:

(+)-аланин (-)-бутанол (+)-глицериновый альдегид

При названиях веществ приведены их знаки вращения: это значит, например, что левовращающий антипод бутанола-2 имеет пространственную конфигурацию , выражаемую именно приведенной выше формулой, а ее зеркальное изображение отвечает правовращающему бутанолу-2. Определение конфигурации оптических антиподов проводится экспериментально [ПРИМ.3] .

В принципе, каждый оптический антипод может быть изображен двенадцатью (!) различными проекционными формулами - в зависимости от того, как расположена модель при проекции, с какой стороны мы смотрим на нее. Чтобы стандартизировать проекционные формулы, введены определенные правила их написания. Так, главную функцию, если она стоит в конце цепи, принято ставить наверху, главную цепь изображать вертикально.

Для того, чтобы сопоставлять "нестандартно" написанные проекционные формулы, надо знать следующие правила преобразования проекционных формул.

1. Формулы можно вращать в плоскости чертежа на 180 о, не меняя их стереохимического смысла:

2. Две (или любое четное число) перестановки заместителей у одного асимметрического атома не меняют стереохимического смысла формулы:

3. Одна (или любое нечетное число) перестановок заместителей у асимметрического центра приводит к формуле оптического антипода:

4. Поворот в плоскости чертежа на 90 о превращает формулу в антиподную, если только при этом одновременно не изменить условие расположения заместителей относительно плоскости чертежа, т.е. не считать, что теперь боковые заместители находятся за плоскостью чертежа, а верхний и нижний - перед ней. Если пользоваться формулой с пунктиром, то изменившаяся ориентация пунктира прямо напомнит об этом:

5. Вместо перестановок проекционные формулы можно преобразовывать путем вращения любых трех заместителей по часовой стрелке или против нее; четвертый заместитель при этом положения не меняет (такая операция эквивалентна двум перестановкам):

6. Проекционные формулы нельзя выводить из плоскости чертежа (т.е. нельзя, например, рассматривать их "на просвет" с обратной стороны бумаги - при этом стереохимический смысл формулы изменится).

II.5. Рацематы

Если в формуле вещества есть асимметрический атом, это отнюдь не означает, что такое вещество будет обладать оптической активностью. Если асимметрический центр возникает в ходе обычной реакции (замещение в группе СН 2 , присоединение по двойной связи и т.п.), то вероятность создания обеих антиподных конфигураций одинакова. Поэтому, несмотря на асимметрию каждой отдельной молекулы, получающееся вещество оказывается оптически неактивным. Такого рода оптически неактивные модификации, состоящие из равного количества обоих антиподов, называются рацематами [ПРИМ.4] .

II.6. Диастереомерия

Соединения с несколькими асимметрическими атомами обладают важными особенностями, отличающими их от рассмотренных ранее более простых оптически активных веществ с одним центром асимметрии.

Допустим, что в молекуле некоего вещества имеются два асимметрических атома; обозначим их условно А и Б. Легко видеть, что возможны молекулы со следующими комбинациями:

Молекулы 1 и 2 представляют собой пару оптических антиподов; то же самое относится и к паре молекул 3 и 4. Если же сравнивать друг с другом молекулы из разных пар антиподов - 1 и 3, 1 и 4, 2 и 3, 2 и 4, то мы увидим, что перечисленные пары не являются оптическими антиподами: конфигурация одного асимметрического атома у них совпадает, конфигурация другого - не совпадает. Все это пары диастереомеров , т.е. пространственных изомеров, не составляющих друг с другом оптических антиподов.

Диастереомеры отличаются друг от друга не только оптическим вращением, но и всеми другими физическими константами: у них разные температуры плавления и кипения, разные растворимости и др. Различия в свойствах диастереомеров зачастую ничуть не меньше, чем различия в свойствах между структурными изомерами.

Примером соединения рассматриваемого типа может случить хлоряблочная кислота

Ее стереоизомерные формы имеют следующие проекционные формулы:

эритро- формы трео- формы

Названия эритро - и трео - происходят от названий углеводов эритрозы и треозы. Эти названия употребляют для указания взаимного положения заместителей у соединений с двумя асимметрическими атомами: эритро -изомерами называют те, у которых два одинаковых боковых заместителя стоят в стандартной проекционной формуле на одной стороне (справа или слева); трео -изомеры имеют одинаковые боковые заместители на разных сторонах проекционной формулы [ПРИМ.5] .

Два эритро- изомера представляют собой пару оптических антиподов, при их смешении образуется рацемат. Парой оптических изомеров являются и трео- формы; они тоже дают при смешении рацемат, отличающийся по свойствам от рацемата эритро- формы. Таким образом, всего существуют четыре оптически активных изомера хлоряблочной кислоты и два рацемата.

При дальнейшем росте числа асимметрических центров число пространственных изомеров возрастает, причем каждый новый асимметрический центр вдвое увеличивает число изомеров. Оно определяется формулой 2 n , где n - число асимметрических центров.

Число стереоизомеров может уменьшаться из-за частичной симметрии, появляющейся в некоторых структурах. Примером может служить винная кислота, у которой число индивидуальных стереоизомеров сокращается до трех. Их проекционные формулы:

Формула I идентична с формулой Iа: превращается в нее при повороте на 180 о в плоскости чертежа и, следовательно, не изображает нового стереоизомера. Это оптически неактивная модификация - мезо-форма . В отличие от рацемата, который может быть расщеплен на оптические антиподы , мезо- форма принципиально нерасщепляема: каждая ее молекула имеет один асимметрический центр одной конфигурациии, второй - противоположной. В итоге происходит внутримолекулярная компенсация вращения обоих асимметрических центров.

Мезо- формы имеются у всех оптически активных веществ с несколькими одинаковыми (т.е. связанными с одинаковыми заместителями) асимметрическими центрами [ПРИМ.6] . Проекционные формулы мезо- форм всегда можно узнать по тому, что их всегда можно разделить горизонтальной линией на две половины, которые по записи на бумаге формально идентичны, в действительности же зеркальны:

Формулы II и III изображают оптические антиподы винной кислоты; при их смешении образуется оптически неактивный рацемат - виноградная кислота.

II.7. Номенклатура оптических изомеров

Самая простая, наиболее старая, однако и ныне еще употребляемая система номенклатуры оптических антиподов основана на сравнении проекционной формулы называемого антипода с проекционной формулой некоего стандартного вещества, выбранного в качестве "ключа". Так, для альфа-оксикислот и альфа -аминокислот ключом является верхняя часть их проекционной формулы (в стандартной записи):

L- оксикислоты (Х = ОН) D- оксикислоты (Х = ОН)

L-аминокислоты (Х = NH 2) D- аминокислоты (Х = NH 2)

Конфигурацию всех альфа -оксикислот, имеющих в стандартно написанной проекционной формуле Фишера гидроксильную группу слева, обозначают знаком L ; если же гидроксил расположен в проекционной формуле справа - знаком D [ПРИМ.7] .

Ключом для обозначения конфигурации сахаров служит глицериновый альдегид:

L-(-)-глицериновый альдегид D- (+)-глицериновый альдегид

В молекулах сахаров обозначение D- или L- относится к конфигурации нижнего асимметрического центра.

Система D- ,L- обозначений имеет существенные недостатки: во-первых, обозначение D- или L- указывает конфигурацию только одного асимметрического атома, во-вторых, для некоторых соединений получаются разные обозначения, в зависимости от того, взят ли в качестве ключа глицериновый альдегид или оксикислотный ключ, например:

Эти недостатки системы ключей ограничивают ее применение в настоящее время тремя классами оптически активных веществ: сахарами, аминокислотами и оксикислотами. На общее же применение рассчитана "R,S-система Кана, Ингольда и Прелога [ПРИМ.8] .

Для определения R- или S-конфигурации оптического антипода необходимо расположить тетраэдр заместителей вокруг асимметрического углеродного атома таким образом, чтобы младший заместитель (обычно это водород) имел направление "от наблюдателя". Тогда если движение при переходе по кругу трех остальных заместителей от старшего к среднему по старшинству и затем к самому младшему происходит против часовой стрелки - это R -изомер (ассоциируется с таким же движением руки при написании буквы R), если по часовой стрелке - это S- изомер (ассоциируется с таким же движением руки при написании буквы S).

Для определения старшинства заместителей у асимметрического атома используются правила подсчета атомных номеров, уже рассматривавшиеся нами в связи с Z,E-номенклатурой геометрических изомеров (см. ).

Для выбора R,S-обозначений по проекционной формуле необходимо путем четного числа перестановок (не изменяющих, как мы знаем, стереохимического смысла формулы) расположить заместители так, чтобы младший из них (обычно водород) оказался внизу проекционной формулы. Тогда старшинство остальных трех заместителей, падающее по часовой стрелке, соответствует обозначению R, против часовой стрелки - обозначению S [ПРИМ.9] :

Контрольные задачи

3. Определите конфигурацию асимметрического центра аскорбиновой кислоты (витамина С) (по R,S -номенклатуре и по сравнению с глицериновым альдегидом):

4. Алкалоид эфедрин имеет формулу:

Дайте название этого соединения, используя R,S -номенклатуру.

5. Цистеин - заменимая аминокислота, участвующая в регуляции процессов обмена веществ, представляет собой L -1-амино-2-меркаптопропионовую кислоту. Изобразите его структурную формулу и дайте название по R,S -номенклатуре.

6. Левомицетин (антибиотик широкого спектра действия) представляет собой D (-)-трео-1-пара-нитрофенил-2-дихлорацетиламино-пропандиол-1,3. Изобразите его структуру в виде проекционной формулы Фишера.

7. Синэстрол - синтетический эстрогенный препарат нестероидного строения. Дайте его название с обозначением стереохимической конфигурации:

II.8. Стереохимия циклических соединений

При замыкании цепи углеродных атомов в плоский цикл валентные углы атомов углерода вынуждены отклоняться от своего нормального тетраэдрического значения, причем величина этого отклонения зависит от числа атомов в цикле. Чем больше угол отклонения валентных связей, тем больше должен быть запас энергии молекулы, тем меньше устойчивость цикла. Однако, плоское строение имеет только трехчленный циклический углеводород (циклопропан); начиная с циклобутана молекулы циклоалканов имеют неплоское строение, что понижает "напряжение" в системе.

Молекула циклогексана может существовать в виде нескольких конформаций, в которых сохраняются "нормальные" валентные углы (для упрощения показаны только атомы углерода):

Энергетически наиболее выгодной является конформация I - так называемая форма "кресла ". Конформация II - "твист " - занимает промежуточное положение: она менее выгодна, чем конформация кресла (из-за наличия в ней заслоненно расположенных атомов водорода), но более выгодна, чем конформация III. Конформация III - "ванна " - наименее выгодна из трех вследствие значительного отталкивания направленных верх атомов водорода.

Рассмотрение двенадцати связей С-Н в конформации кресла позволяет разделить их на две группы: шесть аксиальных связей, направленных поочередно то вверх, то вниз, и шесть экваториальных связей, направленных в стороны. В монозамещенных циклогексанах заместитель может находиться либо в экваториальном, либо в аксиальном положении. Эти две конформации обычно находятся в равновесии и быстро переходят друг в друга через конформацию твист:

Экваториальная конформация (е) обычно беднее энергией и поэтому более выгодна, чем аксиальная (а).

При появлении в циклах заместителей (боковых цепей) кроме проблемы конформации самого цикла перед исследователем встают и проблемы конфигурации заместителей : так, в случае наличия двух одинаковых или различных заместителей появляются цис-транс -изомера. Отметим, что говорить о цис-транс -конфигурации заместителей имеет смысл только в приложении к насыщенным малым и средним циклам (до С 8): в кольцах с большим числом звеньев подвижность становится уже столь значительной, что рассуждения о цис- или транс - положении заместителей теряют смысл.

Так, классическим примером являются стереоизомерные циклопропан-1,2-дикарбоновые кислоты. Существуют две стереоизомерные кислоты: одна из них, имеющая т.пл. 139 о С, способна образовывать циклический ангидрид и является, следовательно, цис -изомером. Другая стереоизомерная кислота с т.пл. 175 о С, циклического ангидрида не образует; этотранс -изомер [ПРИМ.10] :

В таких же отношениях друг с другом находятся две стереоизомерные 1,2,2-триметилциклопентан-1,3-дикарбоновых кислоты. Одна из них, камфорная кислота, т.пл. 187 о С, образует ангидрид и, следовательно, является цис -изомером. Другая - изокамфорная кислота, т.пл. 171 о С, - ангидрида не образует, это транс -изомер:

цис- транс-

Хотя молекула циклопентана на самом деле неплоская, для наглядности удобно изображать ее в плоском виде, как на приведенном выше рисунке, имея в виду, что в цис- изомере два заместителя находятся по одну сторону цикла , а в транс -изомере - по разные стороны цикла .

Дизамещенные производные циклогексана также могут существовать в цис- или транс-форме:

Атом углерода не обладает монополией на создание хиральных центров в молекулах органических соединений. Центром хиральности могут быть также атомы кремния, олова, четырехковалентного азота в четвертичных аммониевых солях и окисях третичных аминов:

В этих соединениях центр асимметрии имеет тетраэдрическую конфигурацию, как и асимметрический атом углерода. Существуют, однако, и соединения с иной пространственной структурой хирального центра.

Пирамидальную конфигурацию имеют хиральные центры, образованные атомами трехвалентного азота, фосфора, мышьяка, сурьмы, серы. В принципе, центр асимметрии можно считать тетраэдрическим, если в качестве четвертого заместителя принять неподеленную электронную пару гетероатома:

Оптическая активность может возникать и без хирального центра, за счет хиральности структуры всей молекулы в целом (молекулярная хиральность или молекулярная асимметрия ). Наиболее характерными примерами являются наличие хиральной оси либо хиральной плоскости .

Хиральная ось возникает, например, в алленах, содержащих различные заместители при sp 2 -гибридных углеродных атомах. Легко видеть, что приведенные ниже соединения являются зеркальными изображениями, а, значит, оптическими антиподами:

Ось хиральности показана на рисунках стрелкой.

Другой класс соединений, имеющих хиральную ось - оптически активные бифенилы, имеющие в орто -положениях объемистые заместители, затрудняющие свободное вращение вокруг С-С связи, соединяющей ареновые кольца:

Хиральная плоскость характеризуется тем, что у нее можно различить "верх" и "низ", а также "правую" и "левую" стороны. Примером соединений с хиральной плоскостью могут служить оптически активный транс- циклооктен и оптически активное производное ферроцена.

В ходе урока вы получите общее представление о видах изомерии, узнаете, что такое изомер. Узнаете о видах изомерии в органической химии: структурной и пространственной (стереоизомерии). С помощью структурных формул веществ рассмотрите подвиды структурной изомерии (скелетную и изомерию положений), узнаете о разновидностях пространственной изомерии: геометрической и оптической.

Тема: Введение в органическую химию

Урок: Изомерия. Виды изомерии. Структурная изомерия, геометрическая, оптическая

Рассмотренные нами ранее виды формул, описывающих органические вещества, показывают, что одной молекулярной может соответствовать несколько разных структурных формул.

Например, молекулярной формуле C 2 H 6 O соответствуют два вещества с разными структурными формулами - этиловый спирт и диметиловый эфир. Рис. 1.

Этиловый спирт - жидкость, которая реагирует с металлическим натрием с выделением водорода, кипит при +78,5 0 С. При тех же условиях диметиловый эфир - газ, не реагирующий с натрием, кипит при -23 0 С.

Эти вещества отличаются своим строением - разным веществам соответствует одинаковая молекулярная формула.

Рис. 1. Межклассовая изомерия

Явление существования веществ, имеющих одинаковый состав, но разное строение и поэтому разные свойства называют изомерией (от греческих слов «изос» - «равный» и «мерос» - «часть», «доля»).

Типы изомерии

Существуют разные типы изомерии.

Структурная изомерия связана с разным порядком соединения атомов в молекуле.

Этанол и диметиловый эфир - структурные изомеры. Поскольку они относятся к разным классам органических соединений, такой вид структурной изомерии называется еще и межклассовой . Рис. 1.

Структурные изомеры могут быть и внутри одного класса соединений, например формуле C 5 H 12 соответствуют три разных углеводорода. Это изомерия углеродного скелета . Рис. 2.

Рис. 2 Примеры веществ - структурных изомеров

Существуют структурные изомеры с одинаковым углеродным скелетом, которые отличаются положением кратных связей (двойных и тройных) или атомов, замещающих водород. Этот вид структурной изомерии называется изомерией положения .

Рис. 3. Структурная изомерия положения

В молекулах, содержащих только одинарные связи, при комнатной температуре возможно почти свободное вращение фрагментов молекулы вокруг связей, и, например, все изображения формул 1,2-дихлорэтана равноценны. Рис. 4

Рис. 4. Положение атомов хлора вокруг одинарной связи

Если же вращение затруднено, например, в циклической молекуле или при двойной связи, то возникает геометрическая или цис-транс изомерия. В цис-изомерах заместители находятся по одну сторону плоскости цикла или двойной связи, в транс-изомерах - по разные стороны.

Цис-транс изомеры существуют в том случае, когда с атомом углерода связаны два разных заместителя. Рис. 5.

Рис. 5. Цис- и транс- изомеры

Еще один тип изомерии возникает в связи с тем, что атом углерода с четырьмя одинарными связями образует со своими заместителями пространственную структуру - тетраэдр. Если в молекуле есть хотя бы один углеродный атом, связанный с четырьмя разными заместителями, возникает оптическая изомерия . Такие молекулы не совпадают со своим зеркальным изображением. Это свойство называется хиральностью - от греческого с hier - «рука». Рис. 6. Оптическая изомерия характерна для многих молекул, входящих в состав живых организмов.

Рис. 6. Примеры оптических изомеров

Оптическая изомерия называется также энантиомерией (от греческого enantios - «противоположный» и meros - «часть»), а оптические изомеры - энантиомерами . Энантиомеры оптически активны, они вращают плоскость поляризации света на один и тот же угол, но в противоположные стороны: d- , или (+)-изомер, - вправо, l- , или (-)-изомер, - влево. Смесь равных количеств энантиомеров, называемая рацематом , оптически недеятельна и обозначается символом d,l- или (±).

Подведение итога урока

В ходе урока вы получили общее представление о видах изомерии, что такое изомер. Узнали о видах изомерии в органической химии: структурной и пространственной (стереоизомерии). С помощью структурных формул веществ рассмотрели подвиды структурной изомерии (скелетную и изомерию положений), познакомились с разновидностями пространственной изомерии: геометрической и оптической.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 1,2 (с.39) Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Почему число изомеров у углеводородов ряда этилена больше, чем предельных углеводородов?

3. Какие углеводороды имеют пространственные изомеры?



Публикации по теме