Как работает вселенная и зачем она нужна? Читать книгу «Как работает Вселенная: Введение в современную космологию» онлайн полностью — Сергей Парновский — MyBook «Как работает Вселенная».

Премия Просветитель

Zimin Foundation

«Как работает Вселенная»

Космологии как науке всего сто лет, а она уже очень многое знает о том, как устроена наша Вселенная - как образовалось все, что нас окружает, от атомов до галактик, где и когда произошел Большой взрыв, что означает разбегание галактик и каково будущее Вселенной. Об этой науке и ее достижениях рассказывает книга С.Л. Парновского «Как работает Вселенная: Введение в современную космологию» («Альпина нон-фикшн»), вошедшая в длинный список премии «Просветитель» 2018 года. Предлагаем читателям N + 1 познакомиться с фрагментом из нее.


Большой взрыв

Итак, к 1930-м гг. стало понятно - Вселенная расширяется, что наглядно проявляется в разбегании галактик. Но ответ на вопрос о том, имела ли Вселенная начало, называемое также Большим взрывом, был не столь очевиден, как кажется на первый взгляд. Концепция Большого взрыва была предложена Леметром в 1931 г., а сам термин был предложен Фредом Хойлом в 1949 г. (Фред Хойл был противником идеи о том, что Вселенная имела начало, и термин «Большой взрыв» был первоначально использован в уничижительном контексте.)

Дело в том, что значение постоянной Хаббла в прошлом могло значительно отличаться от современного. Если бы оно было больше, это означало, что оценка времени существования Вселенной является завышенной и Большой взрыв неизбежно должен был быть. С подобной ситуацией мы имеем дело во всех типах модели Фридмана, в которых постоянная Хаббла падает по мере увеличения возраста Вселенной, отсчитываемого от Большого взрыва. Закон, по которому меняется постоянная Хаббла, зависит от того, чем преимущественно заполнена Вселенная. Если Вселенная заполнена так называемой «холодной» материей, т. е. частицами и объектами, скорости которых существенно меньше скорости света, например звездами, пылью, межзвездным газом, то падение постоянной Хаббла происходит по одному закону. Если материя представлена в виде частиц, движущихся со скоростью, равной (например, фотонов - квантов электромагнитного излучения) или близкой (например, нейтрино, которое, по современным представлениям, имеет малую ненулевую массу покоя) к скорости света, то падение происходит быстрее. В любом случае в момент Большого взрыва постоянная Хаббла для модели Фридмана бесконечно велика.

Но если постоянная Хаббла была меньше, чем в настоящее время, можно допустить ситуацию, когда галактики разлетались до современного состояния в течение бесконечного промежутка времени, т. е. в таких моделях Вселенная существовала всегда и Большого взрыва просто не было. Примером таких моделей является решение де Ситтера, в котором Вселенная пуста, но существует космологическая постоянная. В этом случае размеры Вселенной экспоненциально возрастают со временем, т. е. раньше она была существенно меньше. В этой модели нет Большого взрыва. Однако против моделей без Большого взрыва существует, казалось бы, убедительный аргумент. Раз галактики разбегаются, то в прошлом они располагались ближе друг к другу. Отправляясь во все более далекое прошлое, мы получаем Вселенную с очень большой плотностью материи.

Тем не менее астрономы придумали модель вечно расширяющейся Вселенной, в которой в прошлом мы наблюдали бы точно такую же картину, как и сейчас. Эта удивительная модель, предложенная Фредом Хойлом и Джаянтом Нарликаром, называется стационарной и имеет черты как статической модели Эйнштейна (ничего не меняется со временем), так и динамической модели Фридмана (Вселенная расширяется). Создатели этой теории выдвинули так называемый «идеальный космологический принцип», или абсолютный принцип Коперника. Обычный принцип Коперника утверждает, что свойства Вселенной одинаковы во всех точках пространства. Этот принцип возник из осознания того, что Земля не является центром Вселенной и ее расположение не является чем-то особенным. «Идеальный» космологический принцип добавляет к этому независимость от времени. Стремление к идеальному миру в сочетании с отсутствием в то время прямых доказательств существования Большого взрыва привело к появлению таких странных идей.

Для того чтобы при расширении Вселенной плотность не падала, понадобилось предположить, что материя возникает из ничего равномерно во всей Вселенной, причем с такой скоростью, чтобы компенсировать разрежение, вызванное расширением. Эта теория непрерывного творения материи может быть описана также в более завуалированном виде. Предположим, что во Вселенной существует неизвестное пока науке поле, названное C-полем (от английского слова creation - создание), которое, с одной стороны, обеспечивает расширение Вселенной, а с другой - может превращаться в обычную материю, обеспечивая ее непрерывную генерацию. Расчеты показали, что, согласно этой теории, в 1 м 3 должен рождаться один атом водорода за миллиард лет.

Основополагающие статьи о стационарной космологии были опубликованы Германом Бонди, Томасом Голдом и Фредом Хойлом в 1948 г. Как ни странно, эта теория до сих пор имеет некоторое число сторонников во главе с Нарликаром, одним из ее авторов, которые пытаются объяснить современные космологические данные, используя стационарную модель в XXI в. Подробный рассказ о развитии этой теории можно найти в обзоре Хельги Краг. Следует отметить, что существует весьма небольшое число ученых, отрицающих Большой взрыв.

Теория Большого взрыва была детально проработана. Это сделал уроженец Одессы Георгий (Джордж) Гамов. Советский физик, член-корреспондент Академии наук СССР, он со своей семьей бежал на Запад, где продолжал заниматься физикой. В рамках теории Большого взрыва он подробно рассмотрел все стадии, которые прошла Вселенная на раннем этапе своего существования. Теория отвечала на вопрос, какие частицы и в каком количестве заполняли Вселенную в каждый момент времени, как менялась ее температура, как происходил нуклеосинтез, т. е. образование ядер более тяжелых элементов из более легких элементов.

Это была первая космологическая модель, которая не ограничивалась решением уравнения Эйнштейна. Она использует космологическое решение Фридмана, но особое внимание уделялось тому, чем была заполнена Вселенная на разных стадиях своего развития и какие процессы при этом происходили. Содержимое Вселенной влияло на скорость ее расширения, так что и расширение Вселенной, и эволюцию заполняющей ее материи надо было исследовать одновременно.

Все предсказания теории Гамова, которые можно было проверить по астрономическим данным, подтверждались, а открытие реликтового излучения стало решающим аргументом в пользу ее правоты. С тех пор в продолжение десятилетий космологи называли теорию Гамова стандартной космологической моделью, поскольку она лежала в основе всех космологических расчетов. Отдельные детали уточнялись, но существенной переработке не подвергались. По справедливости, Гамов должен был бы разделить Нобелевскую премию по физике 1978 г. с Пензиасом и Уилсоном, но Гамов умер в 1968 г., а Нобелевскую премию нельзя получить посмертно.

Заметим, что кроме стандартной космологической модели Гамов получил и другие результаты, достойные Нобелевской премии, например создал теорию альфа-распада ядер. Трудно сказать, счел ли Нобелевский комитет этот результат недостаточно важным для Нобелевской премии или не захотел ссориться с Советским Союзом, который был бы явно не в восторге, если бы премию вручили невозвращенцу. Любопытно, что теоретически он мог также претендовать и на Нобелевскую премию по физиологии и медицине за объяснение принципов записи информации в ДНК триплетами нуклеотидов.

Но вернемся к стандартной космологической модели, которая сама по себе, безусловно, заслуживала Нобелевской премии. Популярное изложение выводов этой модели можно найти во многих книгах, в том числе научно-популярных. Бестселлером в свое время стала книга лауреата Нобелевской премии Стивена Вайнберга «Первые три минуты», в которой описаны первые три минуты существования нашей Вселенной, согласно теории Гамова.

Вопрос: Где именно произошел Большой взрыв?
Ответ: Нередко этот вопрос можно услышать даже от профессиональных физиков. Ответ на него прост: выберите любую точку по своему вкусу, например кончик вашего носа. Именно в этой точке произошел Большой взрыв. Впрочем, любая другая точка нашей Вселенной ничуть не хуже, поскольку в ней также произошел Большой взрыв, причем в то же самое время. История любой точки, уходящая в прошлое (еще ее называют мировой линией), рано или поздно упрется в Большой взрыв. Причиной этого вопроса, по-видимому, служат кадры научно-популярных фильмов, которые нередко иллюстрируют Большой взрыв, показанный снаружи. В реальной Вселенной Большой взрыв нельзя наблюдать снаружи, поскольку этого самого «снаружи» просто не существует. Если проводить аналогию со взрывом бомбы, то это не взрыв бомбы, наблюдаемый со стороны, а взрыв бомбы с точки зрения микробов, живущих внутри нее, хотя эта аналогия не совсем верна, поскольку бомба не является точечным объектом.

Вопрос: Применимы ли законы физики к описанию Большого взрыва?
Ответ: С точки зрения математики момент Большого взрыва является тем, что называется сингулярностью или особенностью. К Большому взрыву также применяют термин «космологическая сингулярность в прошлом». Вблизи такой сингулярности кривизна пространства-времени стремится к бесконечности.
Тут необходимо сделать небольшое отступление. Дело в том, что современная наука исходит из предположения, что повсюду в наблюдаемой части Вселенной законы физики одинаковы. Несмотря на постоянно проводимые проверки этого предположения, пока не возникло обоснованных сомнений в его справедливости. При этом слово «наблюдаемой» упомянуто не просто так, поскольку, согласно некоторым теориям, за космологическим горизонтом законы физики могут быть совершенно другими.
Теперь вернемся к Большому взрыву. Современная наука не может описать состояние Вселенной сразу после него, поскольку соответствующие теории (например, квантовая гравитация) еще не созданы. Тем не менее мы надеемся, что существующие теории могут вполне удовлетворительно описать Вселенную, возраст которой существенно превышает планковскую единицу времени, приблизительно равную 10 –42 с. Слова «мы надеемся» стоят здесь из-за того, что мы вряд ли когда-нибудь сможем наблюдать что-либо, относящееся к столь ранней стадии существования Вселенной.

Вопрос: Почему произошел Большой взрыв?
Ответ: Подобный вопрос легко задать, но на него трудно ответить. Большинство космологов считают, что Большой взрыв - результат квантовых эффектов, например квантовой флуктуации или квантового туннельного перехода.

Вопрос: Как гигантская Вселенная с множеством галактик могла образоваться в результате квантовой флуктуации?
Ответ: Начнем с удивительного факта, касающегося гигантской Вселенной с миллионами галактик. Известно, что атомное ядро имеет массу меньше, чем суммарная масса составляющих его протонов и нейтронов, что, собственно, и является причиной их существования. Это явление называется ядерным дефектом (еще говорят - дефицитом) массы. Масса в соответствии с формулой E = mc 2 уменьшается на энергию ядерных взаимодействий, деленную на квадрат скорости света. В нашей Вселенной этот эффект незначителен. Но в гравитационном поле существует свой, гравитационный, дефицит масс. Поэтому масса Вселенной равна массе составляющей ее материи минус гравитационный дефицит массы. Для замкнутой Вселенной полную массу запомнить очень просто: она равна нулю. Гравитационный дефект массы полностью компенсирует массу материи.
А образовать путем квантовой флуктуации объект с нулевой массой уже не кажется такой невозможной вещью.

Вопрос: Почему не образуются новые вселенные внутри нашей Вселенной?
Ответ: Это вовсе не факт. Существуют гипотезы о том, что новые вселенные рождаются постоянно. Возможно, что, пока вы читали это предложение, на расстоянии менее километра от вас образовалась новая вселенная. Но для внешнего наблюдателя эта вселенная схожа с экзотической элементарной частицей. Подобные частицы Моисей Марков называл фридмонами.

Вопрос: Что было до Большого взрыва?
Ответ: На этот вопрос современная наука не может дать никакого ответа. Если кто-то утверждает, что знает ответ, он, скорее всего, ошибается. Один из элегантных способов уйти от ответа на этот вопрос состоит в том, чтобы сказать, что время появилось вместе с нашей Вселенной и понятия «до Большого взрыва» просто не существует.


Полностью читайте:
Парновский С. Л. Как работает Вселенная: Введение в современную космологию. - М. : Альпина нон-фикшн, 2018. - 277 с.

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты. Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

* * *

Приведённый ознакомительный фрагмент книги Как работает Вселенная: Введение в современную космологию (С. Л. Парновский, 2017) предоставлен нашим книжным партнёром - компанией ЛитРес .

Законы Вселенной

1.1. Истоки космологии

Эта книга посвящена космологии – науке о структуре и эволюции Вселенной в целом, ее прошлом и будущем. Космология – не просто молодая, а очень молодая наука; ей исполнилось всего 100 лет. Ее появление связано с публикацией в 1917 г. работы Альберта Эйнштейна «Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie». В ней впервые законы физики были применены ко всей Вселенной сразу. Конкретно речь шла об уравнениях недавно открытой Эйнштейном ОТО.

В принципе ничто не мешало этой науке появиться на 250 лет раньше, сразу после открытия Исааком Ньютоном закона всемирного тяготения. Физики XVII–XIX вв. рассуждали о бесконечной Вселенной, заполненной звездами, вокруг которых обращаются планеты. Такая Вселенная существовала вечно и все, что нужно было для предсказания ее будущего состояния, – это знание законов механики и текущего положения всех объектов. Однако сила всемирного тяготения в классической механике имеет одну особенность: это всегда сила притяжения, которая никогда не становится силой отталкивания. Поэтому отдельные звезды в бесконечной Вселенной под действием силы взаимного притяжения должны были бы в конце концов собраться вместе. Вопрос о взаимном притяжении решался с помощью простого, но неверного рассуждения: раз Вселенная бесконечна, то на каждую частицу действует сила притяжения бесконечного числа других частиц. Если считать, что частицы заполняют Вселенную с постоянной плотностью, можно сделать вывод, что суммарная сила компенсируется, следовательно, гравитационным притяжением при рассмотрении динамики Вселенной в целом можно пренебречь.

Эта идея подобна попыткам поставить карандаш на кончик грифеля. В обоих случаях причиной проблем является неустойчивость равновесия. Даже если мы как-то умудримся поставить карандаш вертикально на острый конец грифеля, то любое сколь угодно малое отклонение от вертикали вызывает момент силы, отклоняющий карандаш в том же направлении, увеличивающий отклонение и полностью нарушающий исходное равновесие. В технике это называется положительной обратной связью.

Еще более близкая аналогия связана с водой в перевернутом стакане. Многие знакомы с классическим опытом, в котором стакан с водой, накрытый открыткой или плотной картонкой, переворачивают верх дном и вода удерживается в стакане атмосферным давлением, эквивалентным давлению 10,3 м воды. Но немногие задумываются, зачем для этого опыта необходима картонка. Причина связана с неустойчивостью Рэлея – Тейлора: когда более плотная жидкость (вода) помещена над менее плотной (воздух), любое отклонение поверхности от плоской будет экспоненциально расти со временем, разрушая границу очень быстро. Процесс обычно называется выливанием жидкости. Вот почему для демонстрации необходима картонка: она никак не влияет на давление воздуха, не создает никаких сил, но фиксирует форму границы раздела между водой и воздухом, препятствуя развитию неустойчивости Рэлея – Тейлора.

Аналогично, в неустойчивой Вселенной случайным образом образуются области повышенной плотности, к которым начинают двигаться соседние звезды и области пониженной плотности, называемые войдами. Заметим, что взаимное притяжение звезд, заполняющих бесконечную Вселенную, приводит не только к росту возмущений плотности, но и к ускоренному сжатию всей Вселенной, т. е. к уменьшению расстояний между звездами.

Естественно, ученым было известно, что отклонения от однородного распределения плотности материи приводили к тому, что неоднородности начинали нарастать со временем, но в тот период этот механизм рассматривался только на масштабах, не превышающих размеры Солнечной системы. Согласно гипотезе Лапласа, планеты Солнечной системы образовались из исходной газопылевой туманности именно под влиянием взаимного гравитационного притяжения. К большим масштабам подобные рассуждения не применяли. В рассматриваемой картине мира рост неоднородностей плотности материи приводил к образованию планет, которые не падали на Солнце только потому, что обращались вокруг него. На расстояниях, сравнимых с расстоянием до ближайших звезд, Вселенная уже рассматривалась как нечто однородное, и считалось, что сила притяжения какого-либо тела к разным звездам полностью компенсируется.

Эту радужную картину нарушал так называемый парадокс Ольберса, сформулированный в 1823 г. немецким астрономом-любителем Хайнрихом Ольберсом, врачом по профессии. Суть его состояла в том, что в бесконечной неизменной Вселенной вместо ночного неба мы видели бы раскаленную небесную сферу, светящуюся, как поверхность Солнца. Объясняется это следующим образом: если мы разделим Вселенную на концентрические сферические оболочки постоянной толщины с Землей в центре, то поток света, падающий на Землю от каждой из оболочек, будет одинаков, поскольку число звезд в них будет расти пропорционально квадрату расстояния, что скомпенсирует аналогичный множитель в формуле для освещенности. Поскольку число слоев бесконечно, то и общая сумма будет бесконечна. Единственная причина, по которой освещенность будет все же конечной, это то, что более близкие звезды будут закрывать собой далекие. Другими словами, в каком бы направлении мы ни посмотрели, рано или поздно луч нашего зрения должен наткнуться на какую-то звезду.

Тем не менее каждый из нас прекрасно знает, что ночью наблюдается совсем другая картина. В качестве простого решения парадокса Ольберса предлагали вариант, при котором свет далеких звезд поглощается облаками межзвездной пыли, но это решение звучит убедительно только для тех, кто не знает физику. За продолжительное время эта пыль, поглощая излучение, нагрелась бы до температуры окружающих звезд и сама стала бы светящимся объектом.

Со временем прогресс в астрономии привел к модели Вселенной, предложенной Уильямом Гершелем в конце XVIII в. В ней звезды не заполняли всю Вселенную, а образовывали единственное звездное скопление, называемое Галактикой и имеющее линзовидную форму. В связи с этим возник вопрос: почему звезды не падают на центр Галактики? Ответ был столь же прост, как и ответ на вопрос, почему планеты не падают на Солнце: они обращаются вокруг него. Точно так же и отдельные звезды Галактики обращаются вокруг ее центра. Движение Солнца относительно центра Галактики было обнаружено все тем же Гершелем в 1783 г. С незначительными уточнениями эта картина мироздания считалась общепринятой до начала XX в. Идея Галактики решала парадокс Ольберса, поскольку материя теперь занимала конечный объем во Вселенной. Однако, после того как были открыты другие галактики, парадокс Ольберса опять стал актуальным.

Таким образом, космология, которая потенциально могла появиться еще в конце XVII в., появилась лишь в начале XX в. и недавно отпраздновала свой столетний юбилей. Возникновение космологии связано с одним удивительным обстоятельством: обычно новые науки появляются в простейшей постановке и затем, в процессе своего развития, переходят к более сложным моделям, расчетам и используют все более современные физические теории. Например, физика твердого тела столетиями получала результаты, основываясь на классической физике, и только потом стала успешно использовать квантовую механику.

Космология же появилась сразу в своем самом сложном варианте – в виде релятивистской космологии, основанной на ОТО. И лишь спустя десятилетия космологи к немалому удивлению обнаружили, что можно рассматривать куда более простую нерелятивистскую космологию. Дело в том, что однородная Вселенная развивается одинаково во всех своих частях, и для изучения развития ее как целого достаточно изучить развитие небольшой области пространства, например 1 см³. А при изучении 1 см³ уже не важны кривизна пространства-времени и другие сложные вопросы ОТО.

Но это справедливо только в случае однородной и изотропной Вселенной. В подобном мире нет избранного места или предпочтительного направления, каждая точка не может быть лучше или хуже, чем любая другая, и каждое направление не лучше или хуже любого другого. Эта идея известна как принцип Коперника. Хотя не все результаты релятивистской космологии могут быть получены в рамках нерелятивистской, но основные понятия выводятся довольно просто. Для их вывода, понимания и анализа достаточно знания физики на уровне младших курсов университета. Поэтому в книге в случаях, когда мы просто не могли отказать себе в желании написать некоторые формулы, мы ограничились нерелятивистской космологией.


Вопрос: Чем космология принципиально отличается от других наук?

Ответ: Тем, что она изучает уникальный, существующий в единственном экземпляре, изменяющийся во времени объект, частью которого мы являемся. В результате не может идти речи ни о повторяемости, ни о воспроизводимости, ни, тем более, об активных экспериментах. В связи с этим к космологическим теориям очень сложно применить критерий фальсифицируемости, выполнение которого требуется от любых научных теорий. Аналогичная ситуация встречается и в некоторых других научных дисциплинах, таких как история и эволюционная биология.

1.2. Принципы общей теории относительности

Появлению науки космологии предшествовало появление ОТО, окончательно сформулированной Эйнштейном в 1916 г. Эта теория является одной из вершин современной физики. Так как ее идеи и терминология широко используются в космологии, мы решили описать основы ОТО, которые достаточно просты для понимания и могут быть объяснены без использования сложного математического аппарата. Мы начнем с трех классических эффектов ОТО.

1.2.1. Прецессия перигелия

Первый эффект был обнаружен астрономами еще задолго до появления ОТО. Это прецессия перигелия Меркурия, которая проявляется как вращение орбиты Меркурия как целого вокруг Солнца с очень малой угловой скоростью – менее 6 угловых секунд в год. Это было не первое обнаруженное отклонение от простейших законов небесной механики с момента их открытия Иоганном Кеплером. Ранее, в середине XIX в., аналогичное поведение орбиты Урана было успешно объяснено гравитационным влиянием неизвестной тогда планеты, позже получивший название Нептун.

Один из предсказателей существования Нептуна, Урбен Леверье, применил тот же подход к орбите Меркурия, предположив существование новой планеты Вулкан, которая должна быть расположена очень близко к Солнцу и скрываться на фоне его света. После этого предсказания в течение нескольких десятилетий как профессиональные астрономы, так и астрономы-любители сообщали о наблюдении прохождения этой гипотетической планеты по солнечному диску, но затем, после усовершенствования телескопов, эти сообщения были признаны ошибочными. Теперь мы знаем, что планеты Вулкан не существует, и это было известно почти наверняка еще 100 лет назад. Таким образом, вращение орбиты Меркурия надо было как-то объяснить.

ОТО не только объяснила прецессию перигелия Меркурия, но и обеспечила точное количественное согласие теории с наблюдаемой скоростью прецессии. После дальнейшего улучшения точности наблюдений была обнаружена подобная прецессия перигелия Венеры, которая вместе с другими описанными ниже эффектами подтверждает правильность ОТО. В результате Международный астрономический союз (МАС) – высший мировой авторитет в астрономии – издал постановление об обязательном рассмотрении эффектов ОТО при точных расчетах орбит небесных тел в Солнечной системе.

Еще более впечатляющее проявление прецессии, в данном случае периастра (точки орбиты, которая ближе всего к звезде), наблюдается в системах двойных пульсаров. Два массивных тела в этом случае вращаются с периодом в несколько дней на небольшом расстоянии друг от друга. ОТО описывает их движение с точностью до 0,01 %, при этом наблюдаются потери энергии из-за излучения гравитационных волн. За обнаружение таких систем Рассел Алан Халс и Джозеф Хотон Тейлор-младший получили Нобелевскую премию по физике за 1993 г.

1.2.2. Отклонение света

Второй эффект заключается в искривлении световых лучей в гравитационном поле массивных объектов. Это искривление само по себе не было неожиданностью и вполне объяснимо в рамках ньютоновской механики. Но предсказанный ОТО угол отклонения света был в два раза больше по сравнению с ньютоновским. Причина, по которой появился этот коэффициент, будет обсуждена ниже, в подразделе 1.3.2.

В то время явление было чисто умозрительным, но упомянутое различие углов отклонения позволяло узнать, какая из теорий правильно описывает этот эффект, и заставило астрономов измерить его величину. Для этого нужно было измерить положение звезды, свет которой распространялся вблизи Солнца и отклонялся в его гравитационном поле, смещая видимое положение звезды на небе. С современной точностью этот эффект можно измерить даже в перпендикулярном по отношению к Солнцу направлении, используя радиоинтерферометр со сверхдлинной базой (РСДБ), но в начале XX в. он мог быть измерен только на очень небольшом участке неба вокруг Солнца.

Это было сделано экспедицией сэра Артура Эддингтона, которая измерила положения звезд во время полного солнечного затмения 1919 г. Полное солнечное затмение было необходимо, так как в то время астрономы могли производить наблюдения только в видимом свете, и свет Солнца сделал бы невозможным наблюдения звезд возле его диска. Эддингтон и его коллеги проводили наблюдения в Бразилии и на западном побережье Африки. Сравнив фотографии неба вблизи Солнца во время затмения и той же области неба вдали от Солнца, они измерили угол отклонения, который соответствовал предсказанию Эйнштейна. Эти наблюдения все же были недостаточно точны, но ситуация существенно улучшилось после появления радиотелескопов.

Эффект отклонения света является основой для так называемого гравитационного линзирования, при котором наблюдаются несколько изображений одного и того же объекта. Оно активно изучается и даже используется в качестве инструмента для нестандартного наблюдения чрезвычайно удаленных объектов. Мы обсудим это в подразделе 4.2.7.

1.2.3. Гравитационное красное смещение

Третий эффект называется гравитационным красным смещением и описывает разницу в скорости течения времени в точках с различными гравитационными потенциалами. Грубо говоря, время течет быстрее на верхнем этаже здания, чем в его подвале. Это и является причиной изменения частоты. Пусть источник в подвале передает, скажем, 1000 сигналов в секунду. Они ловятся приемником на крыше, но для приемника секунды имеют другую продолжительность, так что в течение своей секунды он получает не 1000, а, например, 999 сигналов. Другими словами, частота в приемнике смещается относительно частоты источника.

Астрономы наблюдали гравитационное красное смещение в спектрах излучения белых карликов, в частности у Сириуса B, который приблизительно содержит массу Солнца в объеме Земли. В результате гравитационный потенциал на его поверхности значительно превосходит максимальные значения, наблюдаемые в Солнечной системе.

Этот эффект был также продемонстрирован в лабораторных условиях Робертом Паундом и Гленом Ребкой в 1959 г. Они построили свой эксперимент вокруг основополагающей идеи квантовой механики о том, что для возбуждения атома из основного состояния он должен поглотить фотон с точно такой же энергией или длиной волны, какой возбужденный атом излучает при переходе в основное состояние. Если что-то (в нашем случае гравитационное красное смещение) изменит пусть даже совсем незначительно энергию или длину волны фотона, пока тот перемещается от одного атома к другому, то фотон не будет поглощаться. Тем не менее он все еще может быть поглощен, если атом-приемник движется таким образом, что изменение длины волны из-за эффекта Доплера компенсирует изменение длины волны из-за гравитационного красного смещения.

Итак, Паунд и Ребка положили одну железную пластину в подвале, присоединили другую к конусу громкоговорителя на крыше и измерили фазу динамика, при которой гамма-поток, создаваемый возбужденными атомами железа в подвале, сильнее всего поглощается атомами железа на крыше. Это дало им возможность вычислить изменение энергии фотона из-за разницы в гравитационном потенциале или скорости течения времени на крыше и в подвале. Их результаты соответствовали предсказанию ОТО в пределах 10 % погрешности.

Дальнейшая проверка этого эффекта была произведена в ходе эксперимента Gravity Probe А в 1976 г., когда на ракету был помещен водородный мазер, используемый в качестве чрезвычайно стабильного генератора частоты. Идентичный мазер покоился на земле. Этот эксперимент подтвердил существование и соответствие ОТО гравитационного красного смещения в пределах погрешности 0,01 %. Сегодня гравитационное красное смещение обычно учитывается, когда требуются точные измерения времени: например, при использовании GPS и других навигационных спутников. Оно также принимается во внимание астрономами при определении земного времени, времени в геоцентрической системе координат и времени в барицентрических координатах, введенных МАС в 1991 г., которые представляют собой, соответственно, время на уровне моря, в центре Земли и в барицентре Солнечной системы.

1.2.4. Другие эффекты и проверки

Эксперимент Gravity Probe А подтвердил также еще один важный эффект ОТО – принцип эквивалентности, в соответствии с которым объект ведет себя одинаково, независимо от того, равномерно ли он ускорен или помещен в однородное гравитационное поле.

С тех пор все предсказания ОТО были подтверждены экспериментально. Одним из наиболее широко известных предсказаний было существование черных дыр (см. раздел 6.1) – массивных компактных объектов, из которых не может вылететь ничто, даже свет. Несмотря на то что в течение достаточно долгого времени их косвенно наблюдали (например, путем отслеживания собственных движений близлежащих звезд), первое прямое наблюдение вспышки, исходящей из так называемого аккреционного диска, окружающего черную дыру, было проведено в июне 2015 г. .

Недавним подтвержденным предсказанием стало открытие гравитационных волн с помощью детектора Advanced LIGO в сентябре 2015 г. [Аббот и др., 2016a], подтвержденное в декабре 2015 г. [Аббот и др., 2016b] и завершившееся присуждением Нобелевской премии по физике за 2017 г. Райнеру Вайссу, Барри Баришу и Кипу Торну. Естественно, что экспериментальные проверки ОТО продолжаются со все более высокой точностью.

Теперь расскажем и о других принципах ОТО.

1.2.5. Выделенная система отсчета

Ньютоновская механика построена вокруг идеи инерциальной системы отсчета. Первый закон Ньютона справедлив только в таких системах. Инерциальная система связана с телом, которое не взаимодействует с остальной частью Вселенной. Возможно ли это? На любое тело можно воздействовать с помощью механических сил, таких как сила натяжения привязанной к телу веревки, и четырех фундаментальных сил: электромагнитных, слабых, сильных и гравитационных. Электромагнитные, слабые и сильные силы действуют лишь на некоторые из частиц, которые имеют ненулевые заряды соответствующего типа. Гравитационная сила, с другой стороны, является универсальной; она действует на все тела во Вселенной. Даже безмассовые частицы, такие как фотоны, подвержены силе гравитационного притяжения. Поэтому не ясно, каким образом можно обеспечить инерциальную систему отсчета в присутствии гравитационного поля.

ОТО тоже выделяет некоторые системы отсчета, но, в отличие от ньютоновской механики, они не должны быть подвержены действию никаких сил, кроме гравитационных. В таких системах отсчета справедливы все физические законы, в том числе законы специальной теории относительности (СТО). Чтобы ускорить тело в такой системе, на него надо воздействовать с помощью любой внешней силы, кроме силы тяжести. Другими словами, это системы, в которых наблюдатель свободно падает. Проиллюстрируем это на двух простых примерах.

Человек спит в своей постели. Для вящей точности укажем, что кровать неподвижна относительно земли, т. е. ее географические координаты постоянны. С ньютоновской точки зрения человек находится в состоянии покоя в приблизительно инерциальной системе отсчета. Это не совсем инерциальная система, потому что этот человек вращается (вместе с его кроватью) вокруг центра Земли, вокруг Солнца (вместе с Землей), вокруг центра Млечного Пути (вместе с Солнечной системой), падает по направлению к скоплению в созвездии Дева (вместе с галактикой Млечный Путь), к Великому аттрактору (вместе со скоплением в Деве) и т. д. Но давайте не будем слишком придирчивы и назовем эту систему инерциальной. Человек находится под воздействием двух основных сил (и множества незначительных): гравитационного притяжения Земли, известного как вес, а также силы давления со стороны кровати из-за сил упругости. Эти силы компенсируют друг друга, в результате чего человек находится в состоянии покоя.

Рассмотрим ту же ситуацию с точки зрения ОТО. В этом случае выделенная система довольно сильно отличается: это система отсчета свободно падающего наблюдателя. Человек, который спит в постели, не пребывает в состоянии покоя в этой системе из-за силы давления со стороны кровати.

Второй случай – это космонавт на орбите вокруг Земли. С ньютоновской точки зрения его система никаким образом не выделенная, так как он находится под воздействием силы тяжести и его траектория искривлена. Это может быть описано двумя способами. В системе отсчета, связанной с Землей, гравитационная сила действует как центростремительная сила, в результате чего его траектория изгибается. В неинерциальной системе отсчета, связанной с космическим кораблем, сила тяготения компенсируется так называемой центробежной силой, что заставляет космонавта ощущать себя в состоянии невесомости.

Эта ситуация выглядит намного проще в рамках выделенной системы отсчета ОТО. На космонавта действует только сила тяжести, т. е. не действуют никакие негравитационные силы, и он, таким образом, покоится в данной системе отсчета. Космический корабль на орбите свободно падает на Землю, но постоянно промахивается из-за тангенциальной скорости. Это основной принцип, который делает возможным полеты в космос.

Космонавт, покоясь в выделенной системе, испытывает невесомость. Тем не менее, если на него воздействовать некоторой негравитационной силой (пихнуть палкой, притянуть веревкой, дать космонавту достаточно сильный магнит и т. д.), этот космонавт будет двигаться, согласно второму закону Ньютона.

Проиллюстрируем силы, действующие в обоих подходах, на рис. 1.1 и 1.2.

1.2.6. Гравитация, инерция и приливные силы

Легко жить в мире с однородной силой тяжести. Ее просто подделать с помощью ускорения, например, ракеты или даже лифта. Внутри замкнутой ракеты или лифта никакие эксперименты не могут обнаружить различия между гравитацией и инерцией. Тем не менее этот трюк возможен только в фантастических книгах, например у Терри Пратчетта, но не в реальной жизни. В реальном мире гравитационное поле можно считать однородным лишь на очень малых масштабах, таких как ваш дом. Проблема заключается в том, что на крупных масштабах гравитационное поле Земли гораздо больше похоже на поле точечной массы, чем на однородное поле, что проявляется в виде двух эффектов: уменьшении ускорения свободного падения по мере увеличения высоты и разницы в направлениях гравитационной силы в двух разных точках на поверхности Земли. В двух диаметрально противоположных точках на Земле, например в Великобритании и в Австралии, направления гравитационных сил почти противоположны. При меньших расстояниях, например между Китаем и Японией, гравитационные силы направлены под гораздо меньшим, но все же значительным углом между ними. Второй эффект может быть имитирован с помощью расширяющейся сферической оболочки, но было бы почти невозможно имитировать различие ускорений свободного падения у пола и у потолка.

В ОТО термин «гравитация» понимается, скорее, не как притяжение к некоторым массивным телам (это обеспечивается движением выделенной системы отсчета), а как небольшие различия в направлении и величине гравитационного поля в близких точках, называемые приливными силами. Название происходит от давно известного факта, что эти силы вызывают приливы в морях и океанах Земли.

Для иллюстрации рассмотрим свободно падающий лифт – пример, придуманный самим Эйнштейном из-за отсутствия ракет в то время – с семью почти невесомыми шарами, которые исходно неподвижны относительно лифта и друг друга. Один из шаров находится в центре масс, другой – ближе к потолку прямо над первым, третий – у пола прямо под ними, а остальные четыре – у стен на высоте первого, как показано на рис. 1.3. Мы предполагаем, что стенки лифта имеют незначительный вес и их единственное назначение – защита шаров от набегающего потока воздуха и поддержка жесткости конструкции.

Каждый из шаров свободно падает вместе с лифтом, но из-за разницы в начальных положениях их движение будет несколько отличаться. Это хорошо видно в системе отсчета, привязанной к лифту. В этой системе шар 1 неподвижен; шар 2, который всегда находится в районе с немного меньшим ускорением свободного падения, дрейфует вверх; аналогичным образом шар 3 дрейфует вниз; шары от 4 до 7 имеют небольшой компонент гравитационной силы, направленной к центру, и дрейфуют в сторону шара 1. Следует отметить, что масштаб приливных сил на рис. 1.3 в значительной степени преувеличен.

Если мы теперь добавим взаимное гравитационное притяжение между шарами в лифте, мы получаем модель приливных сил на Земле. На самом деле приливы на Земле вызваны притяжением Луны и Солнца, но для простоты мы будем рассматривать только лунные приливы и отливы. Приливы будут происходить, когда наблюдатель, Луна и центр Земли находятся на одной прямой, а отливы – когда направления на наблюдателя и Луну из центра Земли будут перпендикулярны.

Приливные силы могут быть довольно сильными и играть важную роль в астрономии. Например, в 1992 г. комета Шумейкера – Леви 9 была разорвана приливными силами в гравитационном поле Юпитера. Другим примером могут служить Магеллановы Облака – два спутника нашей Галактики, которые деформированы ее приливными силами. Особенно сильные приливные силы встречаются в непосредственной близости от компактных объектов, таких как нейтронные звезды или черные дыры (см. раздел 6.1).

С ньютоновской точки зрения падающий лифт – это неинерциальная система отсчета с однородным полем сил инерции, точно компенсирующих силы притяжения в центре масс. Однако во всех других местах этот баланс нарушается и образуется суммарное поле приливных сил, показанное на рис. 1.3. Эти силы заменяют силы тяжести в космическом корабле на орбите. По этой причине ученые и инженеры, связанные с космосом, используют термин «микрогравитация» вместо невесомости.

1.2.7. Лунные приливы и отливы

Для объяснения лунных приливов на Земле в рамках ньютоновского подхода мы рассмотрим сначала гравитационное поле неподвижной Луны. Рассматривая ее как точечную массу, мы видим, что силовые линии ее гравитационного поля, т. е. направления ускорения свободного падения на Луну, радиальные. Таким образом, суммарная сила, действующая на любую частицу на Земле, является суммой притяжения к остальной части Земли и силы, действующей в направлении Луны (мы не рассматриваем другие небесные тела, чтобы избежать путаницы). Для перехода к системе отсчета, связанной с Землей, мы должны вычесть ускорение свободного падения в центре масс Земли из ускорения свободного падения, действующего на каждую точку, как показано на рис. 1.4. В результате мы получаем знакомую картину: приливы в направлении к и от Луны и отливы в перпендикулярных направлениях.

Таким образом, с ньютоновской точки зрения приливная сила – это просто разница ускорений свободного падения между произвольной точкой и некоторой опорной точкой, например центром Земли. С релятивистской точки зрения приливная сила – это то, что отличает гравитацию от сил инерции, вызванных, например, ускорением ракеты.

Переходя в систему свободно падающего наблюдателя, вы можете обнулить силу, действующую в одной точке, как правило, в центре масс, но в любой другой точке имеется ненулевая разность – приливная сила. В ОТО приливные силы являются проявлением кривизны пространства-времени.

Вопрос: Почему приливы, вызванные небольшой Луной, сильнее, чем приливы, вызванные огромным Солнцем?

Ответ: Формулу для приливной силы можно найти в учебниках, она утверждает, что эта сила обратно пропорциональна кубу расстояния. Тем не менее, вместо того чтобы просто использовать эту формулу, покажем, как эта зависимость от расстояния может быть получена с помощью простой аналогии.

Рассмотрим два точечных тела единичной массы – одно в центре Земли, а другое на поверхности Земли. Приливная сила во второй точке может зависеть только от трех параметров: от расстояния между двумя точками, в которых находятся тела, от расстояния до Луны, а также от угла между направлением на Луну и линией, соединяющей эти точки. Эта приливная сила, равная разности сил, действующих на две точечные массы, равна также сумме сил, действующих на второе тело и на первое тело, если вторая взята с противоположным знаком.

Воспользуемся электростатической аналогией и заменим эти тела точечными единичными зарядами, а Луну – внешним точечным зарядом, величина которого выбирается таким образом, что силы, действующие на точечные заряды, идентичны гравитационным силам, действующим на точечные массы . Обратим знак центрального заряда (именно поэтому нам понадобилось переключиться на электрическое поле, так как не существует такого понятия, как отрицательная масса). Теперь на заряд в центре Земли действует сила той же величины, но в противоположном направлении. Эти два противоположных заряда образуют диполь, причем его размеры существенно меньше расстояния до Луны.

Сила, с которой точечный заряд, которым мы заменили Луну, взаимодействует с нашим электрическим диполем, равна искомой приливной силе. Согласно третьему закону Ньютона, она равна также силе, с которой диполь действует на точечный заряд в центре Луны. Поле диполя убывает обратно пропорционально кубу расстояния, поэтому поле приливных сил должно убывать по тому же закону. Возвращаясь к гравитации, мы наконец-то получаем, что приливные силы падают обратно пропорционально кубу расстояния до тела, вызывающего приливы, и пропорциональны его массе.

Теперь сделаем некоторые простые расчеты. Солнце весит 2,0×10 30 кг и расположено на расстоянии 1,5×10 8 км. Луна весит 7,3×10 22 кг и находится на расстоянии 3,8×10 5 км. Таким образом, Солнце в 2,7×10 7 раз тяжелее и в 395 раз дальше, чем Луна. Если возвести отношение расстояний в куб, мы получаем 6,2×10 7 , что в 2,2 раза больше, чем отношение масс. Таким образом, лунные приливы в 2,2 раза сильнее солнечных приливов.

Однако, если нас интересует отношение гравитационных сил, мы должны использовать отношение квадратов расстояний, которое в 176 раз меньше, чем отношение масс, и Солнце легко выигрывает это соревнование. Если мы интересуемся вкладом в гравитационный потенциал, обратно пропорциональный расстоянию, то вклад от галактик в скоплении Девы, расположенных на расстоянии около 54 млн световых лет (св. лет) от Земли, будет существенно большим, чем вклад как Солнца, так и Луны.

1.2.8. Пространство, время и пространство-время

Что такое пространство-время? Начнем с пространства. Наше пространство трехмерно. Это означает, что мы можем двигаться вперед или назад, вправо-влево, вверх или вниз, т. е. изменить наше местоположение, описываемое тремя пространственными координатами. Каждый физический процесс происходит в этих трех координатах и во времени. В ОТО время считается четвертой координатой в дополнение к трем пространственным. Вместе они образуют четырехмерное пространство-время.

Тем не менее время имеет одно важное отличие по сравнению с пространством: мы можем сознательно выбрать, как двигаться в пространстве, но мы не можем повлиять на наше движение во времени. Мы обречены двигаться во времени из прошлого в будущее со скоростью вне нашего контроля, если только не будем двигаться со скоростью, близкой к скорости света. Если мы будем двигаться очень быстро, мы можем немного усложнить ситуацию за счет релятивистского замедления времени, но нам все равно придется двигаться вдоль оси времени по направлению к будущему. По этой причине, даже когда мы объединяем пространственные и временны́е измерения в единое пространство-время, мы не воспринимаем их как равные и по-прежнему относимся ко времени особым образом.

Чем хороша концепция пространства-времени? Когда мы рассматриваем траекторию тела в пространстве, это не дает нам ни малейшего представления о скорости, ускорении и других кинематических свойствах движения, за исключением того, что тело когда-то находилось в каждой точке его траектории. Когда мы переходим к пространству-времени, траектория тела говорит нам не только о его местонахождении, но и о том, когда и как долго тело находилось в каждой точке своего пути. Это дает нам полное описание его кинематики на протяжении рассматриваемого периода времени. Такая траектория в пространстве-времени называется мировой линией тела.

Любая мировая линия реального тела имеет одно фундаментальное ограничение: скорость этого тела, определяемая его мировой линией, не может быть больше, чем скорость света в вакууме. Согласно СТО, только безмассовые частицы могут (и должны) путешествовать со скоростью света. На сегодняшний день известны только две такие частицы: фотон и глюон, которые являются калибровочными бозонами электромагнитных и сильных сил соответственно. Из них только фотоны наблюдаются непосредственно, поскольку глюоны заключены внутри адронов и не могут существовать отдельно. Некоторые теоретики предполагают, что возможно существование особого класса частиц, называемых тахионами, которые всегда движутся быстрее скорости света, однако все попытки обнаружить их пока не увенчались успехом.

Для иллюстрации свойств пространства-времени космологи используют концепцию светового конуса. Он показывает мировые линии фотонов, излучаемых или наблюдаемых в данной точке в данный момент времени. Два различных конуса называются, соответственно, световыми конусами будущего и прошлого. Чтобы обеспечить двумерность рисунка, два пространственных измерения, как правило, отбрасываются, делая его похожим на рис. 1.5, на котором изображен простейший случай плоского пространства-времени, которое также называют пространством-временем Минковского. В нем нет гравитации, пространство не искривлено и работают все законы и формулы СТО. Область внутри светового конуса будущего называется абсолютным будущим, область внутри светового конуса прошлого – абсолютным прошлым, а область вне этих двух световых конусов называется внешней областью. В отсутствии гравитации в пространстве Минковского не возникает проблем с определением инерциальной системы отсчета, которая вдобавок совпадает с релятивистской.

Для любой заданной точки в области абсолютного будущего можно найти такую инерциальную систему отсчета, в которой эта точка находится на том же месте в пространстве, что и исходная, но событие, соответствующее этой точке, происходит позже. Подобную систему отсчета можно найти и для точки в абсолютном прошлом, но с противоположной последовательностью событий. В этих случаях говорят, что интервал – четырехмерная аналогия расстояния – между наблюдателем и любой из этих точек времениподобный.

Для любой точки из внешней области, лежащей вне светового конуса, можно найти такую инерциальную систему отсчета, в которой оба события, соответствующие этой точке и вершине конуса, происходят одновременно, но в разных местах. Такой интервал между событиями называется пространственноподобным. Наконец, если точка находится точно на краю светового конуса, невозможно найти такую инерциальную систему отсчета, в которой события происходят в одном месте или в одно время, но существует фотон, который последовательно проходит обе эти точки. В этом случае интервал между ними называется светоподобным.

Понятие светового конуса непосредственно связано с принципом причинности, который играет ключевую роль в физике. Идея принципа причинности в том, что любое событие может повлиять на события в будущем, но не в прошлом. Специальная теория относительности добавляет, что энергия или информация не может распространяться быстрее, чем свет в вакууме. Сочетая эти две идеи, мы получаем очень важную интерпретацию светового конуса: событие, соответствующее его вершине, может повлиять только на события внутри верхнего конуса, т. е. на абсолютное будущее, и на него могут влиять только события внутри нижнего конуса, лежащие в области абсолютного прошлого. События вне конуса совершенно независимы от события в его вершине и наоборот, хотя они оба могут быть вызваны одной и той же причиной в области абсолютного прошлого. Мировая линия тела всегда лежит в пределах светового конуса, построенного для любой своей точки.

Конец ознакомительного фрагмента.

Концепция кармы в таких религиях, как индуизм и буддизм, говорит о том, что наши действия в настоящем влияют на нашу жизнь в будущем – то есть мы можем оглянуться на свои прошлые решения и сделать выводы о том, как они привели нас к нашей нынешней ситуации. Конечно, эту теорию можно воспринимать скептично, а то и вообще отрицать её. Тем не менее, мы все равно порой видим взаимосвязь между совершением добрых дел и вознаграждением, совершением плохих поступков и наказанием, хотя мы вполне можем думать, что это всего лишь вопрос вмешательства человека, а не какого-то универсального действия. Итак, давайте посмотрим на универсальные правила того, как работает Вселенная.

● Действия значат больше, нежели слова

У вас могут быть самые лучшие намерения, и вы считаете, что это делает вас достойным человеком. Однако это не всегда так. Мало просто вынашивать хорошие мысли в голове, их нужно применять на практике.

● Всё имеет значение

Обычно в качестве примера приводится эффект бабочки. Это позволяет продемонстрировать то, как, казалось бы, несущественные поступки могут иметь долгосрочные последствия. Вы и сами можете видеть, насколько важны все ваши действия. Самые крохотные проявления способны оказать огромное влияние на окружающий вас мир. Взаимосвязанность действий — это один из основных принципов того, как работает Вселенная.

● Признание нашего прошлого

Чтобы двигаться вперед и улучшать себя и свою жизнь, вы должны быть готовы проанализировать свои прошлые действия. Простите себя за свои проступки и избегайте повторения этих ошибок. Рост начинается тогда, когда вы понимаете и принимаете его необходимость.

● Возврат инвестиций

Если вы задаётесь вопросом, почему мир не дает вам никакого позитива, прежде всего подумайте о том, даете ли вы миру какой-либо позитив. Нет никакого смысла в . Честно говоря, это просто эгоистично – ждать, что вам что-то подарят просто так. На самом деле, Вселенная работает, как бумеранг.

● Пребывание в настоящем

Прошлое уже не в вашей власти, и вами не контролируется. А вот будущее вы всё же можете немного определить, но только если сосредоточитесь на настоящем. Когда вы присутствуете в текущем моменте, вы улучшаете ваше будущее «я».

● Готовность к изменению

Упрямство и негибкость ничего не сделают для улучшения вашей жизни. Вы должны быть готовы признать, что допустили ошибки, и проявлять желание стать лучше. Не закрывайте глаза на собственные промахи.

● Позитивность

Попробуйте осознать, сколько радости присутствует в нашем мире, и начните принимать верные решения. Если вы чувствуете себя подавленно, немедленно напомните себе, что позитивное мышление может значительно улучшить ваши жизненные обстоятельства и восприятие происходящего. не работает на негативе!

● Ответственность

Безусловная ответственность за ваши действия – один из величайших законов Вселенной. С каждым своим принятым решением вы будете видеть их долгосрочные последствия. Что бы не произошло в дальнейшем, вы сможете правильно понять, что вызвало те ли иные события.

● Позвольте миру «работать» по его законам

Когда мы легко разочаровываемся, это может быть связано с тем, что мы думаем, что мир нам что-то должен. Жизнь не является по своей природе справедливой или несправедливой. Жизнь – это просто жизнь. Качество нашей жизни определяется не внешними факторами, а тем, как мы их воспринимаем. Отпустите те вещи, которые уже отслужили своё, или находятся вне нашего . Вы не всегда сможете повлиять на обстоятельства. Даже если поймете, как работает Вселенная. Так что это стоит просто принять.

● Не сдавайтесь

Вы должны быть готовы ждать. Вы никогда не знаете, насколько вы близки к победе. А когда вам особенно сложно и хочется опустить руки, скорее всего, переломный момент к лучшему уже совсем близко.

Эти принципы работы Вселенной не предназначены для того, чтобы сделать человеческую жизнь тягостной. Они, напротив, помогают людям лучше контролировать свою жизнь и понимать последствия всех своих действий. Когда вы осознаёте, что ваши решения определяют ход вашей жизни, вы захотите постоянно поступать как можно лучше, честнее и справедливее.

Вселенная - это не мертвый космос. Это живой и самостоятельный организм, некое подобие личности, которая диктует нам свои условия и правила, в биоэнергетике называемые законами мироздания.

Все законы Вселенной крайне просты и незамысловаты. Космос не строит нам лабиринты, а пытается вывести нас из них. Трудности создают люди сами себе без всякой помощи извне. Когда вы живете по законам мироздания, вы всегда настроены на правильную волну. Жизнь проста и понятна, но лишь для тех, кто хочет ее понять.

Почему нужно жить по законам Вселенной

Законы Вселенной не заставят вас отречься от религии и от всего, во что вы верите. Они просто направят вас по нужному руслу, показав свет истины. Ничего не изменится в буквальном смысле — изменится лишь ваш взгляд на мир. Все, к чему вы стремились с юных лет, станет более понятным и очевидным.

Мы дети Вселенной. Мы состоим из звездной пыли, образовавшейся несколько миллиардов лет назад. В биоэнергетике есть такое понятие, как центр изобилия, который дарит нам удачу во всех сферах жизни. Поддерживая связь с этим центром, вы обеспечиваете себя фортуной. Наладить и усилить эту связь поможет вера в законы Вселенной. Примите эти простые истины, чтобы понять то, как устроено все в этом мире.

10 законов мироздания

Закон первый: мысль материальна . Многие из вас наверняка видели голливудские фильмы, где герои могут создавать вокруг себя реальность, лишь вообразив что-то в своей голове. Конечно, с такой скоростью у вас не получится создать свое счастье, но это действительно работает. Чтобы найти хобби, работу своей мечты, любовь и успех, надо все это представить. Запомните, что вы — скульптор, художник, который рисует красками своих мыслей на полотне жизни. Судьба и карма есть, но они не так сильны, как сильна ваша собственная вера в себя и свои действия. Жизнь представляет собой не уже написанную книгу, а стопку пустых листов, которые вы можете выбросить, порвать, позволить заполнить кому-то другому или же заставить себя сесть и написать все самим.

Закон второй: все хорошее начинается с добра в душе . Ваше внутреннее добро рождает свет вокруг вас. Злые люди постоянно натыкаются на грубость, хмурые - на дождь в ясный день, радостные - на радость и позитив. Если вы хотите добра, то не стоит быть злыми, скупыми, завистливыми. Недаром люди еще с древности говорят, что если ты хочешь, чтобы к тебе относились хорошо, то делай это сам. Во Вселенной все последовательно, все логично и необратимо. Помните об этом.

Закон третий: наибольшие изменения в жизни происходят в тех сферах, которым мы больше всего уделяем своего внимания. Большинству из нас известно, что под лежачий камень вода никогда не потечет. Если вы будете лежать на диване, смотря в потолок, то в вашу жизнь не придут деньги. Если вы не будете искать любовь, то не найдете ее в 99 процентах случаев. Чтобы сдвинуть ситуацию с мертвой точки, необходимо предпринять хоть что-то. Не оставляйте без присмотра ни одного уголка своей души, своей жизни. Так вам будет интереснее, легче и просто лучше.

Закон четвертый: каково ваше окружение, таковы и вы сами. Этот закон Вселенной тоже можно продублировать поговоркой — с кем поведешься, от того и наберешься. Ваше ближайшее окружение в лице второй половинки и лучших друзей — это ваше отражение. Если вас не устраивает кто-то, то это свидетельствует об острой необходимости в изменениях. Зачастую это говорит о том, что вы уже изменились. Многие ошибочно полагают, что мы не выбираем друзей и любовь, но это не так. Более того, вы можете изменять свою жизнь путем поиска нужных людей. Если хотите найти удачу в финансовой сфере, то больше общайтесь с успешными личностями. Стать добрее помогут люди светлые. Влюбиться взаимно получится только в случае, если вы не замкнуты, хотя даже закрытые люди могут найти свою вторую половинку — просто нужно быть чуточку внимательнее.

Закон пятый: все то, что мы отдаем окружающему миру, возвращается к нам вдвойне. Если вы будете кричать в лицо человечеству, что вы его ненавидите, то ненависть заполнит вашу жизнь. Ответная реакция людей будет аналогичной, а иногда и гораздо более сильной. Это относится не только к словам и действиям. Даже настроение передается в пространстве великолепно. Кто-то это ощущает, а кто-то нет, но сам факт неопровержим — добрые поступки сделают вас счастливее, а плохие несчастнее.

Закон шестой: сомнения — корень всех проблем. Если вы задумали что-то сделать всерьез, то избавьтесь от сомнений и неуверенности в себе. Когда люди создавали предметы искусства, шедевры техники и гениальные изобретения, они не давали сомнениям захватить власть над их разумом. Вот и вы не давайте им заставить себя верить в то, что любви нет, денег заработать нельзя, а здоровье не вернуть.

Закон седьмой: все мы равны. Нет людей, которые лучше, чем кто-то, или выше по рангу. У Вселенной нет градации в этом плане. Нужно жить и получать удовольствие от каждого мгновения, не зацикливаясь на чем-то. У Вселенной нет любимчиков, которым она дарит всё, а у других всё забирает. Мы все равны. Без исключений.

Закон восьмой: на реализацию каждой мысли требуется определенное время . Иногда времени нужно больше, иногда меньше, однако мгновенно ничего не происходит. Это дает нам шанс определить, что хорошо, а что плохо, чтобы успеть вовремя заблокировать негативные мысли.

Закон девятый: преодолевая трудности, мы становимся сильнее. Любые проблемы в каждой из сфер жизни дарят нам поистине бесценный опыт. Если вы хотите стать успешными, то придется учиться на ошибках. Еще никому и никогда не удавалось осуществить мечту с первого раза и без неудач. Только по ухабистой и разбитой дороге можно доехать до ровной и приятной.

Закон десятый: всё, что мы видим — непостоянно . Мир живет динамикой. Вселенная стремится к хаосу, требуя от нас обратного. Нужно понять то, чего мы хотим. Нужно осознать свою миссию в этом мире. Это цель каждого человека.

Живите каждым мгновением и не позволяйте сомнениям, негативу и обстоятельствам заставлять вас разворачиваться и двигаться назад. Повышайте свою энергетику , чтобы связь с центром изобилия Вселенной только усиливалась. Этот мир может дать вам столько, что вы и представить себе не можете. Удачи вам, и не забывайте нажимать на кнопки и

6.1. Черные дыры

Выполним наше обещание и расскажем о некоторых экзотических объектах, предсказанных ОТО. Они существенно менее распространены, чем темная материя или темная энергия, однако достаточно интересны, чтобы быть по крайней мере упомянутыми в этой книге.

Первый тип объектов, которые мы рассмотрим, - черные дыры, многие из которых наблюдались астрономами. Черная дыра представляет собой объект с плотностью настолько высокой, что пространственная кривизна и приливные силы в ее центре становятся бесконечными (это называется «пространственно-временная сингулярность», или просто «особенность» для краткости). Эта особенность окружена горизонтом событий - «поверхностью» черной дыры. Любой объект, включая свет, проваливается внутрь дыры через ее горизонт событий, но не может покинуть ее и должен двигаться в направлении центральной сингулярности. Именно поэтому этот объект называют черной дырой.

Причина в том, что под горизонтом событий радиальная координата становится времениподобной. Это означает, что радиальная координата тела внутри горизонта должна уменьшаться подобно тому, как временная координата любого тела вне черной дыры должна увеличиваться. Мы путешествуем вдоль времени, а падающий объект внутри черной дыры перемещается вдоль его радиальной координаты к сингулярности.

Могут ли быть схожие участки пространства, где все должно удаляться от этой центральной сингулярности? Физики рассмотрели и эту возможность и назвали такие объекты «белыми дырами». Мы обсудим их чуть позже.

Расстояние от центральной сингулярности до горизонта событий называется радиусом Шварцшильда и пропорционально массе черной дыры. Это не совсем расстояние в привычном понимании слова, ведь движение происходит по времени. Но не будем слишком придираться к словам, когда мы описываем черные дыры и их повадки. Величины радиусов Шварцшильда реально существующих черных дыр, как правило, весьма малы: если бы Солнце стало черной дырой , его радиус Шварцшильда был бы около 3 км. Массы черных дыр лежат в диапазоне от нескольких солнечных масс до нескольких миллиардов солнечных масс. Принимая во внимание, что радиус черной дыры пропорционален ее массе, легко оценить радиусы этих черных дыр.

Первое решение уравнений Эйнштейна, описывающее черную дыру, появилось в 1916 г. одновременно с ОТО. Тем не менее потребовалось около двух десятилетий, чтобы понять физический смысл этого решения, а полное понимание было достигнуто в 1958 г. В течение длительного времени, пока наблюдательные средства не позволяли обнаружить черные дыры, отношение к ним среди астрономов заполняло весь спектр - от полного неприятия до попыток объявить любой непонятный объект черной дырой. Лишь в конце ХХ в. лагерь сторонников черных дыр торжествовал победу: некоторые из наиболее ярых противников были вынуждены признать существование черных дыр. Сам термин «черная дыра» впервые появился в 1964 г.

Естественно, саму черную дыру наблюдать нельзя, так как она, как следует из названия, ничего не излучает. На самом деле черные дыры излучают за счет квантовых эффектов, но температура этого излучения, открытого Стивеном Хокингом, очень мала и реально обнаружить его невозможно. Например, если бы наше Солнце стало черной дырой, то температура этого излучения составляла бы всего 10 −7 К.

Черные дыры можно наблюдать более или менее непосредственно в двух случаях: либо черная дыра является частью двойной системы - в этом случае можно увидеть ее аккреционный диск (излучение от вещества, попадающего в дыру и обращающегося вокруг нее), или это сверхмассивная черная дыра, как Sagittarius A* , расположенная в самом центре нашей Галактики в созвездии Стрельца. Во втором случае мы можем увидеть собственные движения близлежащих звезд, вращающихся вокруг Sagittarius A* . На далеких расстояниях мы можем видеть черные дыры в качестве активных галактических ядер и квазаров. Недавно НАСА показало огромную концентрацию черных дыр в районе под названием Chandra Deep Field-South , сфотографированную космическим рентгеновским телескопом «Чандра» . На участке неба размером с диск Луны находится более 5000 черных дыр.

Астрономам известны черные дыры звездных масс, с массами начиная от нескольких масс Солнца, промежуточных масс порядка сотен масс Солнца и сверхмассивные черные дыры с массами от миллиона масс Солнца. Как правило, они находятся в центрах галактик; в нашей Галактике эту роль играет Sagittarius A* с массой 4 млн масс Солнца. В окрестностях нашей Галактики самая массивная черная дыра находится в центре галактики M87; ее масса составляет 6 млрд масс Солнца. А наиболее массивная из известных черных дыр имеет массу 20 млрд масс Солнца и находится в галактике NGC 4889.

Как образуются черные дыры? Естественно, черные (и белые) дыры могли появиться вместе с остальной частью Вселенной во время Большого взрыва, но все они должны были разнестись далеко за пределы космологического горизонта во время инфляции. Таким образом, у нас нет никаких шансов наблюдать дыры, образованные во время Большого взрыва. Наблюдаемые черные дыры образовались другим путем, а именно путем коллапса, т. е. быстрого сжатия массивных объектов. Очевидно, белые дыры не могли быть сформированы подобным образом, поэтому мы не можем наблюдать ни одну из них.

Черные дыры широко известны благодаря научной фантастике. Другое дело, что свойства черных дыр, описываемых фантастами, довольно далеки от того, что утверждает наука. С точки зрения теории относительности уединенная черная дыра может иметь следующие параметры: массу, электрический заряд и момент импульса. В принципе, рассматриваются черные дыры, имеющие также два нефизических параметра: магнитный заряд и так называемый параметр Ньюмена - Унти - Тамбурино. Никаких других независимых параметров черная дыра иметь не может. Это утверждение известно в теории относительности под названием «теорема о том, что черные дыры не имеют волос» (англ. no-hair theorem ) . Если на черную дыру падает тело сложной формы, например стол, то детали распределения его массы, т. е. все мультипольные моменты, начиная с квадрупольного, излучаются в виде гравитационных волн.

Все черные дыры имеют массу, так что есть только четыре возможных типа черных дыр в зависимости от наличия электрического заряда и вращения. Самые простые из них - это незаряженные невращающиеся черные дыры, описываемые решением Шварцшильда. Заряженные невращающиеся черные дыры описываются метрикой Райсснера - Нордстрёма, незаряженные вращающиеся черные дыры - решением Керра, а заряженные вращающиеся черные дыры - метрикой Керра - Ньюмена. Начнем с простейших черных дыр Шварцшильда.

6.1.1. Шварцшильдовские черные дыры

Рассмотрим вначале простейшую невращающуюся незаряженную черную дыру. В ОТО такая черная дыра описывается метрикой Шварцшильда и, соответственно, называется шварцшильдовской черной дырой. Это решение сферически симметрично и зависит только от одной радиальной координаты r . В центре при r = 0 находится сингулярность, т. е. место, в котором кривизна пространства-времени обращается в бесконечность. С сингулярностями мы уже сталкивались, говоря о Большом взрыве, Большом хрусте и Большом разрыве. Однако эта сингулярность окружена со всех сторон так называемым горизонтом событий черной дыры, имеющим радиус, пропорциональный ее массе. Этот горизонт работает как полупроницаемая мембрана. Сквозь горизонт вещество и излучение могут пройти только внутрь черной дыры, но не могут выйти наружу. Попав внутрь черной дыры, пройдя горизонт событий, любое тело обязано двигаться, уменьшая радиальную координату. Это связано с тем, что под горизонтом событий радиальная координата становится времениподобной, т. е. ведет себя так, как время в привычном для нас пространстве. Поэтому точно так же, как мы не можем двигаться против времени, тело, прошедшее горизонт событий, будет неотвратимо падать на центральную сингулярность.

Какова будет судьба тела, падающего в черную дыру? Если оно свободно падает, то с релятивистской точки зрения находится в состоянии покоя в выделенной системе отсчета. Но на него будут действовать приливные силы, которые чрезвычайно велики вблизи сингулярности. Они стремятся сжать его в тангенциальном направлении и растянуть в радиальном, сделав похожим на макаронину, которая немного толще в верхней части . Так что, если вы хотите испытать, что чувствует человек, падающий в черную дыру, не подвергая себя смертельной опасности, можете привязать гирю к вашим ногам и висеть на руках на гимнастических кольцах, как показано на рис. 6.1 .

При пролете горизонта событий ничего особенного не произойдет; вообще, с точки зрения падающего, момент пересечения телом горизонта событий никак не выделен. При подлете к центральной сингулярности приливные силы станут бесконечными. В результате тело будет разорвано на куски, куски - на кусочки, кусочки - на атомы, а атомы - на элементарные частицы.

Приливные силы пропорциональны M /r 3 , где М - масса черной дыры. Это нерелятивистское приближение, которое справедливо лишь при достаточно большом расстоянии от сингулярности. Для близких расстояний должна быть использована релятивистская формула, но необходимость ее использования означает, что приливные силы велики и падающий человек уже давно разорван; так что, пока он жив, данное приближение хорошо работает. Горизонт событий находится на расстоянии r g , где r g - радиус Шварцшильда, он же гравитационный радиус, равный \(r_{g} = 2GM/c^{2} \approx 2,95M/M_{\odot} \) км, где \(M_{\odot} \) - масса Солнца. Таким образом, если выражать расстояние до черной дыры в ее радиусах Шварцшильда, то приливная сила будет пропорциональна (r s /r ) 3 /M 2 , что означает, что приливные силы на расстоянии, равном заданному числу радиусов Шварцшильда, слабее для более массивных черных дыр.

В частности, если свободно падающий наблюдатель пересекает горизонт событий сверхмассивной черной дыры, он не почувствует ничего особенного. Но не факт, что он сможет долететь в целости до горизонта событий небольшой черной дыры.

Оценим теперь время полета внутри черной дыры - от пересечения горизонта событий до центральной сингулярности. Используем прием, столь любимый физиками-теоретиками, который называется анализом размерности. Так как время падения - кинематическая величина, оно не может зависеть от параметров падающего тела из-за принципа эквивалентности. Таким образом, оно может зависеть только от параметров черной дыры. Черная дыра Шварцшильда имеет только один параметр: массу. У нас также есть две соответствующие фундаментальные константы - гравитационная постоянная G и скорость света в вакууме с . Единственной комбинацией этих трех величин с размерностью времени является GM /c 3 . Таким образом, время падения в черную дыру будет равно \(kGM/c^{3}\approx4,93kM/M_{\odot} \) мкс, где k - некий безразмерный коэффициент. Мы получили ответ, причем в рамках ОТО, ничего не рассчитывая и не используя никаких формул. В этом состоит прелесть анализа размерности. Тут мы могли бы добавить, что величина k по порядку величины не должна сильно отличаться от единицы.

Чтобы найти ее точное значение, понадобятся и формулы, и расчеты. Величина k зависит от того, как именно тело падает, но она не может превышать π в любом случае, даже если тело - это ракета и она включит свой двигатель, пытаясь изо всех сил затормозить падение. Это предельное значение k = π не может быть получено из нерелятивистских формул; заинтересованных отошлем к задаче 17.3 в книге . Таким образом, максимальное время падения в черную дыру равно \(\pi GM/c^{3} \approx 15,5M/M_{\odot} \) мкс. Для черной дыры в центре нашей Галактики Sagittarius A* это время будет около минуты. Для самой массивной из известных черных дыр, находящейся в галактике NGC 4889, с массой около 21×10 9 солнечных масс, оно было бы около 90 часов, так что падающий наблюдатель имел бы достаточно времени, чтобы обдумать, было ли его решение прыгнуть в дыру действительно мудрым.

Время падения измеряется в системе падающего наблюдателя, т. е. по его собственным часам. Это уточнение очень важно, так как время, измеренное в разных системах отсчета, т. е. разными наблюдателями, может существенно различаться. Вблизи черной дыры гравитационное поле очень сильно и приводит к замедлению времени, так называемому гравитационному красному смещению.

Обратим внимание на то, что к сингулярности тело приближается по времени, роль которого играет координата r . Такая сингулярность называется пространственноподобной. Другими примерами такой сингулярности являются космологические сингулярности, т. е. Большой взрыв, Большой хруст и Большой разрыв. Остальные три координаты, в том числе координата, обозначаемая буквой t , вне черной дыры соответствующая времени, внутри черной дыры пространственноподобны, т. е. вдоль них можно двигаться в любом направлении. Для иллюстрации рассмотрим световые конусы падающего тела, показанные на рис. 6.2 . Напомним, что световой конус - это гиперповерхность в пространстве-времени, которая образуется при прохождении света через определенную точку. Самое главное его свойство - это то, что независимо от того, что делает объект, он не может выйти за пределы своего светового конуса. Более подробная информация приведена в разделе 1.2.8 .

Вдали от черной дыры световой конус выглядит вполне нормально: свет распространяется одинаково в любом направлении, поэтому ось светового конуса направлена вдоль оси t . Когда объект приближается к черной дыре, ее гравитация начинает притягивать свет (вспомним гравитационное линзирование). С точки зрения удаленного наблюдателя, свет распространяется быстрее в направлении черной дыры, чем от нее, и световой конус наклоняется в сторону черной дыры. На горизонте событий световой конус наклонен таким образом, что его внешний край проходит параллельно оси t . С этого момента больше невозможно избежать падения в черную дыру. Внутренний край проходит параллельно оси r . Если падающий наблюдатель углубится внутрь черной дыры, его световой конус наклоняется еще сильнее. Теперь оба его края обращены к сингулярности и направлены в противоположных направлениях вдоль оси t . Таким образом, достаточно быстро движущееся тело может двигаться в противоположном направлении оси t , оставаясь внутри своего светового конуса. Возле центральной сингулярности световой конус должен быть повернут на 90°, но эта простая аналогия не очень работает в окрестности сингулярности.

Тело, падая в черную дыру, уменьшает свою потенциальную энергию в гравитационном поле, преобразуя ее в кинетическую. На горизонте событий эта потенциальная энергия становится равной нулю. Если мы будем спускать тело в черную дыру, привязав его к веревке, вращающей при этом ось идеального генератора, мы могли бы получить энергию, равную mc 2 - полной энергии покоя тела.

Эта энергия огромна: на каждый грамм вещества приходится 90 ТДж, что составляет около 25 ГВт-час - энергия, производимая за сутки атомной электростанцией. Если бы такой процесс мог быть реализован на практике, это решило бы все энергетические проблемы человечества, а заодно и проблему мусора. Следует также отметить, что эта энергия была бы действительно «зеленой», так как единственным побочным продуктом процесса являлись бы экологически чистые гравитационные волны.

Для наблюдателя, неподвижного относительно черной дыры и находящегося бесконечно далеко (реально - более чем в 100 радиусах) от нее, время течет с обычной скоростью. По мере приближения к черной дыре время начинает замедляться и на горизонте событий полностью останавливается с точки зрения удаленного наблюдателя. Если мы окружим черную дыру сферой и через люк будем медленно стравливать трос с закрепленными на нем кварцевыми часами, то по мере приближения к черной дыре часы будут идти все медленнее и медленнее независимо от принципа их действия (естественно, кроме часов, основанных на силе тяжести, например маятниковых или песочных).

С этим эффектом связаны два расхожих мифа, одним из которых мы обязаны научно-популярной литературе, а вторым - научно-фантастической. Рассмотрим их по порядку.

Широко известен мысленный эксперимент с двумя наблюдателями, один из которых падает в черную дыру, а другой наблюдает за ним, оставаясь неподвижным. При этом утверждается, что из-за описанного выше эффекта замедления времени неподвижный наблюдатель будет видеть падающего вечно, хотя тот достигнет горизонта событий за вполне конечное время в его собственной системе отсчета. Что же на самом деле увидит неподвижный наблюдатель? За время своего падения падающее тело излучит конечное число фотонов, так как этот процесс будет происходить в его собственной системе отсчета. Поток излучения от падающего тела, достигающий неподвижного наблюдателя, с точки зрения формальной математики будет экспоненциально убывать со временем (чтобы «растянуть» конечное число фотонов на бесконечное время), т. е. яркость тела будет уменьшаться. Кроме того, длина волны этого излучения увеличится из-за гравитационного красного смещения и из-за эффекта Доплера. В результате через более-менее продолжительное время до неподвижного наблюдателя будут долетать только отдельные фотоны, излученные падающим телом, да еще и с крайне низкой энергией. Поэтому, хотя формально неподвижный наблюдатель будет вечно «видеть» падающее тело, в реальности объект будет виден конечное время. Именно потому, что свет приходит в виде квантов, через некоторое время внешний наблюдатель увидит последний фотон, испускаемый падающим телом перед пересечением горизонта. Расчеты показывают, что это произойдет довольно быстро.

В одном научно-фантастическом рассказе описана ситуация, когда гибнущая цивилизация отправила космический корабль, груженный информацией об их достижениях, к черной дыре, чтобы будущие цивилизации смогли его обнаружить и спасти, получив в подарок ценные знания. Возможно ли это? Оказывается, существует конечное время, в течение которого это возможно. По его прошествии неподвижный наблюдатель будет «видеть» (кавычки стоят по причине, описанной в предыдущем абзаце), как корабль-спасатель приближается к спасаемому в течение бесконечного времени, но никогда его не достигнет. Более того, свет от второго корабля никогда не достигнет первого, так что он даже не узнает о том, что кто-то пытался его спасти.

Запас времени на спасение должен быть того же порядка, что и время падения к центральной сингулярности, потому что нет другой доступной характерной шкалы времени. Поскольку это время очень короткое (несколько микросекунд для черной дыры солнечной массы), спасательная команда должна быть чрезвычайно эффективной.

6.1.2. Черная дыра Райсснера - Нордстрёма

Теперь рассмотрим заряженную черную дыру, т. е. черную дыру, которая помимо массы имеет еще и электрический заряд. Отношение ее заряда к массе не может превышать некую критическую величину. Заряженная черная дыра описывается метрикой Райсснера - Нордстрёма. Рассмотрим падение на нее тела. До пересечения горизонта событий все будет происходить почти так же, как и для рассмотренной выше шварцшильдовской черной дыры, за исключением наличия электростатического поля. После прохождения горизонта событий тело точно так же начнет неотвратимо падать в направлении центральной сингулярности, но с одним важным отличием. На пути к центральной сингулярности тело пересечет второй горизонт событий и окажется во внутренней области черной дыры, где радиальная координата снова является пространственноподобной. Что касается центральной сингулярности, то она будет времениподобной, т. е. в ее окрестности можно двигаться как по направлению к ней, так и от нее. Таким образом, любой, даже самый маленький электрический заряд черной дыры полностью меняет тип сингулярности в ее центре.

Теоретически, если падающее тело является, скажем, ракетой, оно может включить двигатели и изменить направление своего движения, начав двигаться с увеличением радиальной координаты. По мнению некоторых специалистов, пролетев через внутренний горизонт, оно снова попадает в область, где радиальная координата времениподобна, и теперь будет увеличиваться, т. е. тело окажется внутри белой дыры, через горизонт которой оно и вылетит наружу. А куда, собственно, оно вылетит? Ответа на этот вопрос никто дать не в состоянии. Непонятно ни в какой точке, ни в какой момент времени, ни вообще в какой вселенной это произойдет. Однако любителей путешествия в неизведанное ожидает одна проблема. Внутренний горизонт черной дыры с разумными с астрономической точки зрения параметрами находится слишком близко к сингулярности, и бросившийся в черную дыру будет разорван еще до того, как его пересечет. Более того, сама идея о том, что внутренний горизонт можно пересечь изнутри, является спекулятивной.

6.1.3. Вращающаяся черная дыра Керра

Последний тип черных дыр, которые мы рассмотрим, - это незаряженные, но вращающиеся черные дыры, описываемые метрикой Керра . Так как большинство астрономических объектов вращаются, это, как полагают, наиболее распространенный тип черных дыр. Как и черная дыра Райсснера - Нордстрёма, черная дыра Керра имеет ограничение. Ее момент импульса при заданной массе не должен превышать критического значения, определяемого ее массой.

В этом случае центральная сингулярность будет окружена сферическим горизонтом событий. Вокруг этого горизонта будет располагаться еще одна поверхность, называемая пределом стационарности. Она имеет форму сплюснутого эллипсоида вращения и касается горизонта событий в точках, лежащих на оси вращения. Пространство между двумя этими поверхностями называется эргосферой. Доказано, что любое тело, попавшее в эргосферу, не может быть неподвижно относительно удаленного наблюдателя - оно обязано вращаться в ту же сторону, что и черная дыра. Вращающиеся в эргосфере тела могут иметь отрицательную полную энергию с учетом энергии покоя. Поэтому тело, залетевшее в эргосферу, может распасться на два тела, одно из которых имеет отрицательную энергию, а второе, по закону сохранения энергии, будет иметь большую энергию, чем исходное тело.

Если развивать идею решения энергетическо-экологических проблем при помощи черных дыр, то можно направить в эргосферу черной дыры контейнер с мусором. Часовой механизм в заданное время откроет контейнер и выбросит мусор на орбиту с отрицательной полной энергией. Ускорившийся контейнер вылетит из эргосферы, и его кинетическая энергия может быть использована в интересах народного хозяйства. Таким образом, можно получить энергию, большую чем mc 2 , где m - масса выброшенного мусора. Откуда же берется дополнительная энергия? Мусор, выброшенный в эргосферу, вращается в сторону, противоположную направлению вращения черной дыры. Провалившись внутрь черной дыры, он уменьшит ее момент импульса. Таким образом, энергия будет получена за счет замедления вращения черной дыры. Такой процесс был предложен Роджером Пенроузом.

Свойства световых конусов вблизи черной дыры Керра показаны на рис. 6.3 . В отличие от сферически-симметричной черной дыры Шварцшильда, черная дыра Керра имеет избранное пространственное направление - ее ось вращения и направление этого вращения. Пространство вокруг черной дыры Керра тоже затягивается в это вращение. Поэтому световые конусы наклоняются не только к центру, но и в направлении вращения. Мы не можем изобразить их на двумерном рисунке, как мы делали это на рис. 6.2 для шварцшильдовской дыры, отказавшись от явного изображения оси времени. По этой причине на рис. 6.3 мы изображаем экваториальное сечение черной дыры Керра, помещаем туда некоторое количество пробных частиц (черных точек), каждая из которых синхронно вспыхивает, становясь вершиной своего светового конуса. Свет от каждой вспышки расходится в стороны, образуя расширяющуюся оболочку или фронт разбегающейся волны. Через некоторое время (в системе отсчета удаленного наблюдателя) мы фиксируем круги, образованные пересечением экваториальной плоскости и фронтов этих волн, как границы белых кружков, изображенных на рис. 6.3 . Самая близкая аналогия - водоворот, на который смотрят сверху. В него бросают камешки и наблюдают, как от места падения расходятся круги на поверхности воды.

Посмотрите внимательно на рис. 6.3 . Вы заметите, что круги расположены по-разному по отношению к точкам. Представьте себе большой круг вокруг центральной сингулярности, проходящей через точку. С физической точки зрения возможны три принципиально различные ситуации: а) круг включает в себя точку; б) круг не включает в себя точку, но пересекает большой круг; в) круг не включает в себя точку и не пересекает большой круг. В первом случае пробная частица может находиться в покое или двигаться в любом направлении; во втором случае пробная частица должна двигаться, но все еще может не приближаться к черной дыре и избежать падения в нее; в третьем случае пробная частица должна двигаться по направлению к сингулярности. Случай а имеет место далеко от черной дыры вне ее эргосферы, снаружи от предела стационарности; случай б имеет место в эргосфере; случай в происходит внутри горизонта событий .

Решение Керра принципиально отличается от решений Шварцшильда и Райсснера - Нордстрёма одним обстоятельством. Последние описывают не только черные дыры, но и пространство-время вокруг любых сферически-симметричных массивных объектов в вакууме, в том числе электрически заряженных. Например, гравитационное поле невращающейся незаряженной одиночной звезды может быть описано решением Шварцшильда. Можно ожидать, что решение Керра аналогично описывает гравитационное поле снаружи вращающейся звезды, но это не так. Причины этого слишком сложны для обсуждения здесь.

Тем, кто заинтересовался черными дырами (и не боится сложных математических формул), рекомендуем прочитать прекрасную статью «Решение Керра - Ньюмена» (Kerr-Newman metric ) на Scholarpedia .

6.2. Голые сингулярности

А что же произойдет, если черная дыра получит слишком большой заряд или слишком большой момент импульса? Тогда это будет не черная дыра, а куда более экзотический объект - голая особенность (naked singularity ). Что же это такое? Внутри черной дыры Райсснера - Нордстрёма находится времениподобная сингулярность, скрытая двумя горизонтами событий. Если же горизонтов нет, то такая времениподобная сингулярность называется голой особенностью. В какой-то степени это граница нашего мира. К ней можно подлететь сколь угодно близко и вернуться обратно, так как нет горизонта, который бы этому помешал. Именно такие сингулярности возникают в решениях Райсснера - Нордстрёма и Керра при заряде или моменте импульса, превышающих критические значения. Горизонты исчезают, и вся структура пространства-времени преображается.

Можно считать, что каждая голая особенность - это окно в неизвестный мир. Мы не имеем никакой возможности предсказать, что именно оттуда может появиться. Могут ли оттуда явиться воинственные пришельцы на летающих тарелках или черти с вилами? В принципе, это не исключено, но завоевать наш мир им не удастся из-за бесконечно больших приливных сил в его окрестности. И летающие тарелки, и вилы, и пришельцы с чертями будут разорваны на элементарные частицы.

Таким образом, голые особенности, если таковые существуют, должны в основном производить свет и элементарные частицы. Каков источник этого вещества и излучения? Никто не знает. Романтик мог бы назвать голые особенности дверями между нашим миром и каким-то другим, по крайней мере черным ходом или форточкой. Другими словами, голые особенности - если они существуют - двусторонние порталы в другие миры, в отличие от черных дыр, которых можно назвать односторонними порталами.

Однако существование голых особенностей не признается многими физиками-теоретиками и математиками. Математики вообще не любят работать с решениями, имеющими особенности. Возражения физиков сводятся к двум основным пунктам. Во-первых, мы не знаем, будут ли выполняться законы физики в том виде, какими мы их знаем, возле сингулярности. Во-вторых, мы не можем знать граничные условия на них, и присутствие таких «окон» не дает нам возможность предсказывать будущее состояние Вселенной по начальным условиям.

Вторая причина привела известного физика Роджера Пенроуза к формулировке Принципа космической цензуры (Cosmic Censorship Principle ). Согласно этому принципу, все сингулярности, образовавшиеся при коллапсе, должны быть скрыты от удаленного наблюдателя горизонтами событий.

Этот принцип является всего лишь гипотезой. Вдобавок он не отменяет существования голых особенностей, возникших вместе с остальной Вселенной в момент Большого взрыва. Однако уже знакомая вам инфляция разнесла бы такие сингулярности далеко за пределы нашего космологического горизонта. Поэтому Принцип космической цензуры, если он справедлив, практически означает, что в доступной нашему наблюдению части Вселенной нет голых особенностей.

Многие решения ОТО содержат голые особенности. Вопрос в том, являются ли эти решения физическими и имеют ли какое-то отношение к реальности. В принципе, часть объектов, отождествляемых с черными дырами, могла бы быть голыми особенностями, но никаких свидетельств в пользу этого нет.

6.3. Кротовые норы

Еще один вид экзотических объектов - кротовые норы. В последнее время к ним стали также применять термин «червоточина». В них можно влететь в одном месте, а вылететь совершенно в другом. За это качество они активно эксплуатируются писателями-фантастами, желающими как-то обойти ограничение скорости света, практически ставящее крест на межзвездных путешествиях, не говоря уже о межгалактических. С точки зрения внешнего наблюдателя, кротовая нора неотличима от шварцшильдовской черной дыры. Вход в кротовую нору, как правило, имеет вид черной дыры, а выход - белой. Такие объекты могли быть созданы только вместе со Вселенной во время Большого взрыва, а значит, обнаружить их нам, скорее всего, не удастся. В этом смысле они чем-то похожи на рассмотренные выше черные дыры Райсснера - Нордстрёма, но отличаются от них тем, что, пролетая кротовую нору в наиболее часто рассматриваемом ее варианте, тело пересекает не четыре, а только два горизонта событий, двигаясь вдоль времениподобного пути . Это, в частности, означает, что кротовая нора допускает движение только в одном направлении. Однако для всех физически разумных вариантов кротовой норы приливные силы настолько велики, что исключают возможность переноса каких-либо макроскопических объектов.

Вопрос

Если человек, упавший в черную дыру, посветит фонариком наружу вдоль радиуса, сможет ли этот свет увеличить свою радиальную координату?

Ответ

Воспользуемся следующей аналогией: человек, который выпал из летящего самолета во время падения, бросил свои ключи вверх. Могут ли эти ключи взлететь? Это довольно трудно себе представить. Они также будут падать вниз, но медленнее, и ударятся о землю вскоре после их владельца. То же самое будет происходить со светом - он все равно попадет в центральную особенность, но немного позже, чем человек с фонариком. При этом, с точки зрения падающих, свет фонарика и связка ключей будут от них удаляться. Вспомнив, что границы светового конуса представляют собой траекторию света, мы можем понять этот процесс из рис. 6.2

Внутренняя структура черной дыры Керра (внешний и внутренний горизонты, особенности) является весьма сложной, и мы не описываем ее в этой книге. В любом случае, не упав внутрь горизонта событий, мы не увидим ничего из находящегося внутри.

Есть разные варианты кротовых нор, но среди них нет общепринятого, поэтому мы описываем один из них.



Публикации по теме