Кинетическая и потенциальная энергия. Кинетическая энергия vs потенциальная энергия

С понятием работы тесно связано другое фундаментальное физическое понятие – понятие энергии. Поскольку в механике изучается, во-первых, движение тел, а во-вторых, взаимодействие тел между собой, то принято различать два вида механической энергии: кинетическую энергию , обусловленную движением тела, и потенциальную энергию , обусловленную взаимодействием тела с другими телами.

Кинетической энергией механической системы называют энергию, з ависящую от скоростей движения точек этой системы.

Выражение для кинетической энергии можно найти, определив работу равнодействующей силы, приложенной к материальной точке. На основании (2.24) запишем формулу для элементарной работы равнодействующей силы:

Так как
, то dА = mυdυ. (2.25)

Чтобы найти работу равнодействующей силы при изменении скорости тела от υ 1 до υ 2 проинтегрируем выражение (2.29):

(2.26)

Так как работа - мера передачи энергии от одного тела другому, то на

основании (2.30) запишем, что величина есть кинетическая энергия

тела:
откуда вместо (1.44) получаем

(2.27)

Теорему, выраженную формулой (2.30) принято называть теоремой о кинетической энергии . В соответствии с ней работа сил, действующих на тело (или систему тел), равна изменению кинетической энергии этого тела (или системы тел).

Из теоремы о кинетической энергии следует физический смысл кинетической энергии : кинетическая энергия тела равна работе, которую оно способно совершать в процессе уменьшения своей скорости до нуля. Чем больше «запас» кинетической энергии у тела, тем большую работу оно способно совершить.

Кинетическая энергия системы равна сумме кинетических энергий материальных точек, из которых эта система состоит:

(2.28)

Если работа всех сил, действующих на тело, положительна, то кинетическая энергия тела возрастает, если работа отрицательна, то кинетическая энергия убывает.

Очевидно, что элементарная работа равнодействующей всех приложенных к телу сил будет равна элементарному изменению кинетической энергии тела:

dА = dЕ к. (2.29)

В заключение заметим, что кинетическая энергия, как и скорость движения, имеет относительный характер. Например, кинетическая энергия пассажира, сидящего в поезде, будет разной, если рассматривать движение относительно полотна дороги или относительно вагона.

§2.7 Потенциальная энергия

Вторым видом механической энергии является потенциальная энергия – энергия, обусловленная взаимодействием тел.

Потенциальная энергия характеризует не любое взаимодействие тел, а лишь такое, которое описывается силами, не зависящими от скорости. Большинство сил (сила тяжести, сила упругости, гравитационные силы и т.д.) именно таковы; исключением являются лишь силы трения. Работа рассматриваемых сил не зависит от формы траектории, а определяется лишь её начальным и конечным положением. Работа таких сил на замкнутой траектории равна нулю.

Силы, работа которых не зависит от формы траектории, а зависит лишь от начального и конечного положения материальной точки (тела) называют потенциальными или консервативными силами .

Если тело взаимодействует со своим окружением посредством потенциальных сил, то для характеристики этого взаимодействия можно ввести понятие потенциальной энергии.

Потенциальной называют энергию, обусловленную взаимодействием тел и зави­сящую от их взаимного расположения.

Найдем потенциальную энергию тела, поднятого над землей. Пусть тело массой m равномерно перемещается в гравитационном поле из положения 1 в положение 2 по поверхности, сечение которой плоскостью чертежа показано на рис. 2.8. Это сечение является траекторией материальной точки (тела). Если трение отсутствует, то на точку дейст­вуют три силы:

1) сила N со стороны поверхности нормально поверхности, работа этой силы равна нулю;

2) сила тяжести mg, работа этой силы А 12 ;

3) сила тяги F со стороны некоторого движущего тела (двигатель внутреннего сгорания, электродвигатель, человек и т. п.); работу этой силы обозначим А T .

Рассмотрим работу силы тяжести при перемещении тела вдоль наклонной плоскости длиной ℓ (рис. 2.9). Как видно из этого рисунка, работа равна

А" = mgℓ соsα = mgℓ соs(90° + α) = - mgℓ sinα

Из треугольника ВСD имеем ℓ sinα = h, по­этому из последней формулы следует:

Траекторию движения тела (см. рис. 2.8) можно схематично представить небольшими участками наклонной плоскости, поэтому для, работы силы тяжести на всей траектории 1 -2 справедливо выражение

A 12 =mg (h 1 -h 2) =-(mg h 2 - mg h 1) (2.30)

Итак, работа силы тяжести не зависит от траектории тела, а зависит от различия в высотах расположения начальной и конечной точек траектории.

Величину

е п = mg h (2.31)

называют потенциальной энергией материальной точки (тела) массой m поднятой над землей на высоту h. Следовательно, формулу (2.30) можно переписать так:

A 12 = =-(En 2 - En 1) или A 12 = =-ΔEn (2.32)

Работа силы тяжести равна взятому с обратным знаком изменению потенциальной энергии тел, т. е. разности ее конечного и начального значений (теорема о потенциальной энергии ).

Подобные рассуждения можно привести и для упруго деформированного тела.

(2.33)

Отметим, что физический смысл имеет разность потенциальных энергий как величина, определяющая работу консервативных сил. В связи с этим безразлично, какому положению, конфигурации, следует приписать нулевую потенциальную энергию.

Из теоремы о потенциальной энергии можно получить одно очень важное следствие: консервативные силы всегда направлены в сторону уменьшения потенциальной энергии. Установленная закономерность проявляется в том, что любая система, предоставленная самой себе, всегда стремится перейти в такое состояние, в котором её потенциальная энергия имеет наименьшее значение. В этом заключается принцип минимума потенциальной энергии .

Если система в данном состоянии не обладает минимальной потенциальной энергией, то это состояние называют энергетически невыгодным .

Если шарик находится на дне вогнутой чаши (рис.2.10,а), где его потенциальная энергия минимальна (по сравнению с ее значениями в соседних положениях), то его состояние более выгодно. Равновесие шарика в этом случае является устойчивым : если сместить шарик в сторону и отпустить, то он снова возвратится в своё первоначальное положение.

Энергетически невыгодным, например, является положение шарика на вершине выпуклой поверхности (рис.2.10, б). Сумма сил, действующих при этом на шарик, равна нулю, и потому, этот шарик будет находится в равновесии. Однако равновесие это является неустойчивым : достаточно малейшего воздействия, чтобы он скатился вниз и тем самым перешёл в состояние энергетически более выгодное, т.е. обладающее меньшей

потенциальной энергией.

При безразличном равновесии (рис. 2.10, в) потенциальная энергия тела равна потенциальной энергии всех его возможных ближайших состояний.

На рисунке 2.11 можно указать некоторую ограниченную область пространства (например cd), в которой потенциальная энергия меньше, чем вне её. Эта область получила название потенциальной ямы .

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

Энергия в физике

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Потенциальная энергия

В физике потенциальной энергией называют энергию, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела. То есть, если тело поднято над землей, то оно обладает возможностью падая, произвести какую-либо работу.

И возможная величина этой работы будет равна потенциальной энергии тела на высоте h. Для потенциальной энергии формула определяется по следующей схеме:

A=Fs=Fт*h=mgh, или Eп=mgh,

где Eп потенциальная энергия тела,
m масса тела,
h - высота тела над поверхностью земли,
g ускорение свободного падения.

Причем за нулевое положение тела может быть принято любое удобное нам положение в зависимости от условий проводимых опыта и измерений, не только поверхность Земли. Это может быть поверхность пола, стола и так далее.

Кинетическая энергия

В случае, когда тело движется под влиянием силы, оно уже не только может, но и совершает какую-то работу. В физике кинетической энергией называется энергия, которой обладает тело вследствие своего движения. Тело, двигаясь, расходует свою энергию и совершает работу. Для кинетической энергии формула рассчитывается следующей образом:

A = Fs = mas = m * v / t * vt / 2 = (mv^2) / 2 , или Eк= (mv^2) / 2 ,

где Eк кинетическая энергия тела,
m масса тела,
v скорость тела.

Из формулы видно, что чем больше масса и скорость тела, тем выше его кинетическая энергия.

Каждое тело обладает либо кинетической, либо потенциальной энергией, либо и той, и другой сразу, как, например, летящий самолет.

Потенциальная и кинетическая энергия позволяют охарактеризовать состояние любого тела. Если первая применяется в системах взаимодействующих объектов, то вторая связана с их движением. Эти виды энергии, как правило, рассматриваются тогда, когда сила, связывающая тела, независима от траектории движения. При этом важны только начальное и конечное их положения.

Общие сведения и понятия

Кинетическая энергия системы является одной из важнейших ее характеристик. Физики выделяют два вида такой энергии в зависимости от вида движения:

Поступательная;

Вращения.

Кинетическая энергия (Е к) представляет собой разность между полной энергией системы и энергией покоя. Исходя из этого, можно сказать, что она обусловлена движением системы. Тело имеет ее только тогда, когда оно движется. В состоянии покоя объекта она равняется нулю. Кинетическая энергия любых тел зависит исключительно от скорости движения и их масс. Полная энергия системы находится в прямой зависимости от скорости ее объектов и расстояния между ними.

Основные формулы

В том случае, когда любая сила (F) действует на тело, находящееся в покое так, что оно приходит в движение, можно говорить о совершении работы dA. При этом величина этой энергии dE будет тем выше, чем больше совершается работы. В этом случае верно такое равенство: dA = dE.

С учетом пути, пройденного телом (dR) и его скорости (dU), можно воспользоваться 2 законом Ньютона, исходя из которого: F = (dU/dE)*m.

Вышеуказанный закон используется только тогда, когда имеется инерциальная система отсчета. Существует еще один важный нюанс, учитываемый при расчетах. На значение энергии влияет выбор системы. Так, согласно системе СИ, она измеряется в джоулях (Дж). Кинетическая энергия тела характеризуется массой m, а также скоростью перемещения υ. В этом случае она составит: E k = ((υ*υ)*m)/2.

Исходя из вышеуказанной формулы, можно сделать вывод, что кинетическую энергию определяют массой и скоростью. Иными словами, она представляет собой функцию движения тела.

Энергия в механической системе

Кинетическая энергия представляет собой энергию механической системы. Она зависит от скорости движения ее точек. Данная энергия любой материальной точки представляется такой формулой: E = 1/2mυ 2, где m - масса точки, а υ - ее скорость.

Кинетическая энергия механической системы являет собой арифметическую сумму таких же энергий всех ее точек. Ее также можно выразить следующей формулой: E k = 1/2Mυ c2 + Ec, где υc — скорость центра масс, М - масса системы, Ec - кинетическая энергия системы при движении вокруг центра масс.

Энергия твердого тела

Кинетическая энергия тела, которое движется поступательно, определяется как и такая же энергия точки с массой, равной массе всего тела. Для расчета показателей при перемещении применяются более сложные формулы. Изменение этой энергии системы в момент ее перемещения из одного положения в другое происходит под воздействием приложенных внутренних и внешних сил. Оно равняется сумме работ Aue и A"u данных сил при этом перемещении: E2 - E1 = ∑u Aue + ∑u A"u.

Данное равенство отражает теорему, касающуюся изменения кинетической энергии. С ее помощью решаются самые разные задачи механики. Без этой формулы невозможно решить целый ряд важнейших задач.

Кинетическая энергия при высоких скоростях

Если скорости тела близки к скорости света, кинетическую энергию материальной точки можно рассчитать по следующей формуле:

E = m0c2/√1-υ2/c2 - m0c2,

где с - скорость света в вакууме, m0 - масса точки, m0с2 - энергия точки. При маленькой скорости (υ

Энергия при вращении системы

Во время вращения тела вокруг оси каждый его элементарный объем массой (mi) описывает окружность радиусом ri. В этот момент объем имеет линейную скорость υi. Поскольку рассматривается твердое тело, угловая скорость вращения всех объемов будет одинакова: ω = υ1/r1 = υ2/r2 = … = υn/rn (1).

Кинетическая энергия вращения твердого тела представляет собой сумму всех таких же энергий его элементарных объемов: E = m1υ1 2/2 + miυi 2/2 + … + mnυn 2/2 (2).

При использовании выражения (1), получаем формулу: E = Jz ω 2/2, где Jz - это момент инерции тела вокруг оси Z.

При сравнении всех формул становится ясно, что момент инерции - это и есть мера инертности тела во время вращательного движения. Формула (2) подходит для объектов, вращающихся относительно неподвижной оси.

Плоское движение тела

Кинетическая энергия тела, движущегося вниз по плоскости, складывается из энергии вращения и поступательного движения: E = mυc2/2 + Jz ω 2/2, где m - масса движущегося тела, Jz - момент инерции тела вокруг оси, υc - скорость центра масс, ω - угловая скорость.

Изменение энергии в механической системе

Изменение значения кинетической энергии тесно связано с потенциальной. Суть этого явления можно понять благодаря закону сохранения энергии в системе. Сумма E + dP во время перемещения тела всегда будет одинаковой. Изменение значения E всегда происходит одновременно с изменением dP. Таким образом, они преобразуются, словно перетекая друг в друга. Такое явление можно встретить практически во всех механических системах.

Взаимосвязь энергий

Потенциальная и кинетическая энергии тесно связаны между собой. Их сумму можно представить как полную энергию системы. На молекулярном уровне - это внутренняя энергия тела. Она присутствует постоянно, пока существует хотя бы какое-то взаимодействие между телами и тепловое движение.

Выбор системы отсчета

Для проведения вычисления значения энергии выбирают произвольный момент (его считают начальным) и систему отсчета. Определить точную величину потенциальной энергии возможно только в зоне воздействия сил, которые не зависят от траектории движения тела при совершении работы. В физике данные силы называют консервативными. Они имеют постоянную связь с законом сохранения энергии.

Суть разницы между потенциальной и кинетической энергией

Если внешнее воздействие минимально или сводится к нулю, изучаемая система всегда будет тяготеть к состоянию, в котором ее потенциальная энергия также будет стремиться к нулю. Например, подброшенный вверх мячик достигнет предела этой энергии в верхней точке траектории движения и в тот же момент начнет падать вниз. В это время накопленная в полете энергия преобразуется в движение (выполняемую работу). Для потенциальной энергии в любом случае существует взаимодействие как минимум двух тел (в примере с мячиком гравитация планеты оказывает на него влияние). Кинетическую энергию можно рассчитать индивидуально для любого движущегося тела.

Взаимосвязь разных энергий

Потенциальная и кинетическая энергия изменяются исключительно при взаимодействии тел, когда действующая на тела сила совершает работу, значение которой отлично от нуля. В замкнутой системе работа силы тяготения или упругости равняется изменению потенциальной энергии объектов со знаком «-»: A = - (Ep2 - Ep1).

Работа силы тяготения или упругости равняется изменению энергии: A = Ek2 - Ek1.

Из сравнения обоих равенств ясно, что изменение энергии объектов в замкнутой системе равняется изменению потенциальной энергии и противоположно ему по знаку: Ek2 - Ek1 = - (Ep2 - Ep1), или иначе: Ek1 + Ep1 = Ek2 + Ep2.

Из указанного равенства видно, что сумма этих двух энергий тел в замкнутой механической системе и взаимодействующих силами упругости и тяготения, всегда остается постоянной. Исходя из вышеизложенного, можно сделать вывод о том, что в процессе изучения механической системы следует рассматривать взаимодействие потенциальной и кинетической энергий.

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ , энергия, которой обладает движущийся предмет. Получает ее, начав двигаться. Зависит от массы () предмета и его скорости (v ), согласно равенству: К. э. = 1/2mv 2 . При ударе преобразуется в другую форму энергии, такую как тепловая, звуковая или световая. см. также ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ .

Кинетическая энергия. Движущийся грузовик обладает кинетической энергией (А). Для того, чтобы увеличить его скорость, ему нужно сообщить дополнительную энергию, достаточную для преодоления трения и сопротивления воздуха, и увеличения скорости. Для того, чтобы понизить кинетическую энергию грузовика, необходимую для того чтобы кинетическая энергия была преобразована в тепловую энергию тормозов и шин (В), Кинетическая энергия нагруженного грузовика, двигающегося с такой же скоростью, будет больше из-за большей массы (С) и ему понадобится больше тормозной силы, чтобы растратить кине тическую энергию и остановиться на том же расстоянии, что и ненагруженный грузовик.


Научно-технический энциклопедический словарь .

Кинети́ческая эне́ргия - скалярная функция , являющаяся мерой движения материальных точек , образующих рассматриваемую механическую систему , и зависящая только от масс и модулей скоростей этих точек . Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как

T = ∑ m i v i 2 2 {\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}} ,

где индекс i {\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения . Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя ; таким образом, кинетическая энергия - часть полной энергии , обусловленная движением . Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T {\displaystyle T} , E k i n {\displaystyle E_{kin}} , K {\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).

История понятия

Кинетическая энергия в классической механике

Случай одной материальной точки

По определению, кинетической энергией материальной точки массой m {\displaystyle m} называется величина

T = m v 2 2 {\displaystyle T={{mv^{2}} \over 2}} ,

при этом предполагается, что скорость точки v {\displaystyle v} всегда значительно меньше скорости света . С использованием понятия импульса ( p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} ) данное выражение примет вид T = p 2 / 2 m {\displaystyle \ T=p^{2}/2m} .

Если F → {\displaystyle {\vec {F}}} - равнодействующая всех сил , приложенных к точке, выражение второго закона Ньютона запишется как F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} . Скалярно умножив его на перемещение материальной точки и учитывая, что a → = d v → / d t {\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t} , причём d (v 2) / d t = d (v → ⋅ v →) / d t = 2 v → ⋅ d v → / d t {\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t} , получим F → d s → = d (m v 2 / 2) = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T} .

Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина T {\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения .

Случай абсолютно твёрдого тела

T = M v 2 2 + I ω 2 2 . {\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}

Здесь - масса тела, v {\displaystyle \ v} - скорость центра масс , ω → {\displaystyle {\vec {\omega }}} и - угловая скорость тела и его момент инерции относительно мгновенной оси , проходящей через центр масс .

Кинетическая энергия в гидродинамике

Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны , порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это - просто большие вихри, относимые к неупорядоченному движению атмосферы.

Кинетическая энергия в квантовой механике

В квантовой механике кинетическая энергия представляет собой оператор , записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором ( p ^ = − j ℏ ∇ {\displaystyle {\hat {p}}=-j\hbar \nabla } , - мнимая единица):

T ^ = p ^ 2 2 m = − ℏ 2 2 m Δ {\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }

где ℏ {\displaystyle \hbar } - редуцированная постоянная Планка , ∇ {\displaystyle \nabla } - оператор набла , Δ {\displaystyle \Delta } - оператор Лапласа . Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики - уравнение Шрёдингера .

Кинетическая энергия в релятивистской механике

Если в задаче допускается движение со скоростями, близкими к скорости света , кинетическая энергия материальной точки определяется как

T = m c 2 1 − v 2 / c 2 − m c 2 , {\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}

где - масса , v {\displaystyle \ v} - скорость движения в выбранной инерциальной системе отсчёта, c {\displaystyle \ c} - скорость света в вакууме ( m c 2 {\displaystyle mc^{2}} - энергия покоя). Как и в классическом случае, имеет место соотношение F → d s → = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} , получаемое посредством умножения на d s → = v → d t {\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде F → = m ⋅ d (v → / 1 − v 2 / c 2) / d t {\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t} ).



Публикации по теме