Kvant. Законы сохранения2

  • В механике энергия системы тел определяется положением тел и их скоростями. Сначала найдем, как энергия тел зависит от их скоростей.

Вычислим работу силы , действующей на тело (материальную точку) массой m, в простом случае, когда тело движется прямолинейно, сила постоянна и ее направление совпадает с направлением скорости.

При перемещении тела на Δ его скорость меняется от значения 1 до значения 2 . Выберем координатную ось X так, чтобы векторы , 1 , 2 и Δ были сонаправлены, с этой осью (рис. 6.8). Тогда работа силы

Рис. 6.8

Согласно кинематической формуле (1.20.8) перемещение тела при движении с постоянным ускорением равно

В нашем случае v 1 = v 2 , v 0x = v 1 , a x = a.

Поэтому выражение для работы (6.5.1) примет вид

Согласно второму закону Ньютона = m. Следовательно,

Величину, равную половине произведения массы тела на адрат его скорости, называют кинетической(1) энергией.

Обозначим кинетическую энергию через E k:

Любое движущееся тело обладает энергией, пропорциональной его массе и квадрату скорости.

Учитывая определение кинетической энергии (6.5.4), выражение (6.5.3) для работы можно переписать так:

Равенство (6.5.5) выражает теорему об изменении кинетической энергии: изменение кинетической энергии тела (точнее, материальной точки) за некоторый промежуток времени равно работе, совершенной за это время силой, действующей на тело.

Кинетическая энергия увеличивается, если работа положительна, и уменьшается при отрицательной работе.

Можно доказать, что теорема (6.5.5) справедлива и в тех случаях, когда на тело действует переменная сила и оно движется по криволинейной траектории.

Кинетическая энергия выражается в тех же единицах, что и работа, т. е. в джоулях.

Так как кинетическая энергия отдельного тела определяется его массой и скоростью, то она не зависит от того, взаимодействует ли это тело с другими телами или нет. Значение кинетической энергии зависит от системы отсчета, как и значение скорости. Кинетическая энергия системы тел равна сумме кинетических энергий отдельных тел, входящих в эту систему.

Существенно, что при доказательстве теоремы об изменении кинетической энергии мы использовали лишь определение работы и второй закон Ньютона. Никаких предположений о характере сил взаимодействия между телами не было сделано. Это могли быть силы тяготения, силы упругости или силы трения.

Движущееся тело обладает кинетической энергией. Эта энергия равна работе, которую надо совершить, чтобы увеличить скорость тела от нуля до значения v.

(1) От греческого слова kinema - движение.

Закон Сохранения Механической Энергии

Если в замкнутой системе не действуют силы, трения и силы сопротивления , то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной .

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменениюпотенциальной энергиител, взятому с противоположным знаком:

Следовательно

E k1 +E p1 =E k2 +E p2 .

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражаетзакон сохранения энергии в механических процессах . Он является следствием законов Ньютона. СуммуE =E k +E p называютполной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

b. С учётом силтрения

Присматриваясь к движению шарика, подпрыгивающего на плите (§ 102), можно обнаружить, что после каждого удара шарик поднимается на немного меньшую высоту, чем раньше (рис. 170),т. е. полная энергия не остается в точности постоянной, а понемногу убывает; это значит, что закон сохранения энергии в таком виде, как мы его сформулировали, соблюдается в этом случае только приближенно. Причина заключается в том, что в этом опыте возникают силы трения: сопротивление воздуха, в котором движется шарик, и внутреннее трение в самом материале шарика и плиты. Вообще, при наличии трения закон сохранения механической энергии всегда нарушается и сумма потенциальной и кинетической энергий тел уменьшается. За счет этой убыли энергии и совершается работа против сил трения 1).

Уменьшение высоты отскока шарика после многих отражений от плиты.

Например, при падении тела с большой высоты скорость тела, вследствие действия возрастающих сил сопротивления среды, вскоре становится постоянной (§ 68); кинетическая энергия тела перестает меняться, но его потенциальная энергия поднятия над землей уменьшается. Работу против силы сопротивления воздуха совершает сила тяжести за счет потенциальной энергии тела. Хотя при этом и сообщается некоторая кинетическая энергия окружающему воздуху, но она меньше, чем убыль потенциальной энергии тела, и, значит, суммарная механическая энергия убывает.

Работа против сил трения может совершаться и за счет кинетической энергии. Например, при движении лодки, которую оттолкнули от берега пруда, потенциальная энергия лодки остается постоянной, но вследствие сопротивления воды уменьшается скорость движения лодки, т. е. ее кинетическая энергия, и увеличение кинетической энергии воды, наблюдающееся при этом, меньше, чем убыль кинетической энергии лодки.

Подобно этому действуют и силы трения между твердыми телами. Например, скорость, которую приобретает груз, соскальзывающий с наклонной плоскости, а следовательно и его кинетическая энергия, меньше, чем та, которую он приобрел бы в отсутствие трения. Можно так подобрать угол наклона плоскости, что груз будет скользить равномерно. При этом его потенциальная энергия будет убывать, а кинетическая - оставаться постоянной, и работа против сил трения будет совершаться за счет потенциальной энергии.

В природе все движения (за исключением движений в полной пустоте, например движений небесных тел) сопровождаются трением. Поэтому при таких движениях закон сохранения механической энергии нарушается, и это нарушение происходит всегда в одну сторону - в сторону уменьшения суммарной энергии.

"Вообще, при наличии трения 1. закон сохранения механической энергии всегда нарушается и 2.сумма потенциальной и кинетической энергий тел уменьшается." Второе верно.Первое - наглая ложь ! Закон не нарушается. Dura lex sed lex.

Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.

Кинетическая и потенциальная энергия

Различают два вида энергии – кинетическую и потенциальную.

ОПРЕДЕЛЕНИЕ

Кинетическая энергия – это энергия, которой тело обладает вследствие своего движения:

ОПРЕДЕЛЕНИЕ

Потенциальная энергия – это энергия, которая определяется взаимным расположением тел, а также характером сил взаимодействия между этими телами.

Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе по перемещению тела из данного положения на нулевой уровень:

Потенциальная энергия – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :

Тело может одновременно обладать и кинетической, и потенциальной энергией.

Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):

Закон сохранения энергии

Для замкнутой системы тел справедлив закон сохранения энергии:

В случае, когда на тело (или систему тел) действуют внешние силы, например, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно внешних сил:

Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и , он справедлив не только для , но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.

В наиболее общем виде закон сохранения энергии можно сформулировать так:

  • энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.

Примеры решения задач

ПРИМЕР 1

Задание Пуля, летящая со скоростью 400 м/с, попадает в земляной вал и проходит до остановки 0,5 м. Определить сопротивление вала движению пули, если ее масса 24 г.
Решение Сила сопротивления вала – это внешняя сила, поэтому работа этой силы равна изменению кинетической энергии пули:

Так как сила сопротивления вала противоположна направлению движения пули, работа этой силы:

Изменение кинетической энергии пули:

Таким образом, можно записать:

откуда сила сопротивления земляного вала:

Переведем единицы в систему СИ: г кг.

Вычислим силу сопротивления:

Ответ Сила сопротивления вала 3,8 кН.

ПРИМЕР 2

Задание Груз массой 0,5 кг падает с некоторой высоты на плиту массой 1 кг, укрепленную на пружине с коэффициентом жесткости 980 Н/м. Определить величину наибольшего сжатия пружины, если в момент удара груз обладал скоростью 5 м/с. Удар неупругий.
Решение Запишем для замкнутой системы груз+плита. Так как удар неупругий, имеем:

откуда скорость плиты с грузом после удара:

По закону сохранения энергии полная механическая энергия груза вместе с плитой после удара равна потенциальной энергии сжатой пружины:

А так ли хорошо знакомы вам законы сохранения? // Квант. - 1987. - № 5. - С. 32-33.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Вещи не могут ни создаваться из ничего, ни,
однажды возникнув, вновь обращаться в ничто...
Лукреций Кар. «О природе вещей»

Развитие физики сопровождалось установлением самых разных законов сохранении, утверждающих, что в изолированных системах определенные величины не могут возникать или исчезать. Представления о том, что подобные законы существуют, возникли в глубине веков: приведенное в эпиграфе изречение Лукреция отражает еще античные взгляды. Сегодня физикам известно довольно много таких законов, часть из них знакома и вам - это законы сохранения импульса, энергии, заряда. Дальнейшее изучение физики позволит узнать, что есть весьма необычные законы сохранения, например, странности, четности и очарования. Но прежде - поработаем с теми, которые вы должны хорошо знать.

Вопросы и задачи

  1. Может ли кинетическая энергия тела изменяться, если на тело не действуют силы?
  2. Может ли кинетическая энергия тела оставаться неизменной, если равнодействующая приложенных к телу сил отлична от нуля?
  3. Когда перенос электрического заряда из одной точки электрического поля в другую не сопровождается изменением энергии?
  4. В какие виды энергии превращается при фотоэффекте энергия падающего на вещество света?
  5. Каким образом космонавт, не связанный с кораблем, может вернуться на корабль?
  6. Зависит ли полный импульс хорошо центрированного маховика от частоты его вращения?
  7. В массивный однородный цилиндр, который может без трения вращаться вокруг горизонтальной оси, попадает пуля, летящая горизонтально со скоростью υ , и после удара о цилиндр падает на тележку. Зависит ли скорость тележки, которую она приобретает после удара пули, того, в какую часть цилиндра попадет пуля?

  8. Излучая фотон, атом газа изменяет свой импульс. Почему это изменение неизбежно?
  9. В процессе аннигиляции электрона и позитрона никогда не возникает один гамма-квант. Какой из законов сохранения проявляется в этом факте?
  10. Металлическая пластина зарядилась под действием рентгеновских лучей. Каков знак заряда?
  11. При аннигиляции электрона с позитроном образуются гамма-кванты; однако такого не происходит при встрече двух электронов или двух позитронов. Какой здесь сказывается закон сохранения?
  12. Микроопыт

    Пройдите от кормы неподвижной поначалу лодки к ее носовой части. Почему лодка станет двигаться в противоположную сторону?

    Любопытно, что…

    Часто некоторые законы сохранения оказываются справедливыми лишь при описании ограниченного круга явлений. Так, при изучении химических реакций можно считать, что масса сохраняется, однако при ядерных реакциях применение такого закона выло вы ошибочным, так как, например, масса конечных продуктов деления урана меньше массы исходного количества урана.

    Если бы закон сохранения заряда не являлся вполне точным законом природы, то электрон мог бы распасться, например, на нейтрино и фотон. Поиски таких распадов, однако, не увенчались успехом и показали, что время жизни электрона по крайней мере не меньше 10 21 лет. (Возраст же Вселенной оценивается сегодня учеными в 10 10 лет.)

    Именно закон сохранения заряда подсказал Дж. Максвеллу идею о возможном возникновении магнитного поля в результате изменения электрического поля. Развитие этой идеи привело Максвелла к предсказанию периодических электромагнитных процессов, распространяющихся в пространстве. Вычисленное значение скорости распространения оказалось в точности равным ранее измеренной скорости света.

Из курса физики 8 класса вы знаете, что сумма потенциальной (mgh) и кинетической (mv 2 /2) энергии тела или системы тел называется полной механической (или механической) энергией.

Вам известен также закон сохранения механической энергии:

  • механическая энергия замкнутой системы тел остаётся постоянной, если между телами системы действуют только силы тяготения и силы упругости и отсутствуют силы трения

Потенциальная и кинетическая энергия системы могут меняться, преобразуясь друг в друга. При уменьшении энергии одного вида на столько же увеличивается энергия другого вида, благодаря чему их сумма остаётся неизменной.

Подтвердим справедливость закона сохранения энергии теоретическим выводом. Для этого рассмотрим такой пример. Маленький стальной шарик массой m свободно падает на землю с некоторой высоты. На высоте h 1 (рис. 51) шарик имеет скорость v 1 , а при снижении до высоты h 2 его скорость возрастает до значения v 2 .

Рис. 51. Свободное падение шарика на землю с некоторой высоты

Работа действующей на шарик силы тяжести может быть выражена и через уменьшение потенциальной энергии гравитационного взаимодействия шарика с Землёй (Е п), и через увеличение кинетической энергии шарика (Е к):

Поскольку левые части уравнений равны, то равны и их правые части:

Из этого уравнения следует, что при движении шарика его потенциальная и кинетическая энергия менялась. При этом кинетическая энергия возросла на столько же, на сколько уменьшилась потенциальная.

После перестановки членов в последнем уравнении получим:

Уравнение, записанное в таком виде, свидетельствует о том, что полная механическая энергия шарика при его движении остаётся постоянной.

Оно может быть записано и так:

E п1 + E к1 = E п2 + E к2 . (2)

Уравнения (1) и (2) представляют собой математическую запись закона сохранения механической энергии.

Таким образом, мы теоретически доказали, что полная механическая энергия тела (точнее, замкнутой системы тел шарик - Земля) сохраняется, т. е. не меняется с течением времени.

Рассмотрим применение закона сохранения механической энергии для решения задач.

Пример 1 . Яблоко массой 200 г падает с дерева с высоты 3 м. Какой кинетической энергией оно будет обладать на высоте 1 м от земли?

Пример 2 . Мяч бросают вниз с высоты h 1 = 1,8 м со скоростью v 1 = 8 м/с. На какую высоту h 2 отскочит мяч после удара о землю? (Потери энергии при движении мяча и его ударе о землю не учитывайте.)

Вопросы

  1. Что называется механической (полной механической) энергией?
  2. Сформулируйте закон сохранения механической энергии. Запишите его в виде уравнений.
  3. Может ли меняться с течением времени потенциальная или кинетическая энергия замкнутой системы?

Упражнение 22

  1. Решите рассмотренную в параграфе задачу из примера 2 без использования закона сохранения механической энергии.
  2. Оторвавшаяся от крыши сосулька падает с высоты h = 36 м от земли. Какую скорость v она будет иметь на высоте h = 31 м? (Принять g = 10 м/с 2 .)
  3. Шарик вылетает из детского пружинного пистолета вертикально вверх с начальной скоростью v 0 = 5 м/с. На какую высоту от места вылета он поднимется? (Принять g = 10 м/с 2 .)

Задание

Придумайте и проведите простой опыт, наглядно демонстрирующий, что тело движется криволинейно, если скорость движения этого тела и действующая на него сила направлены вдоль пересекающихся прямых. Опишите используемое оборудование, ваши действия и наблюдаемые результаты.

Итоги главы
Самое главное

Ниже даны названия физических законов и их формулировки. Последовательность изложения формулировок законов не соответствует последовательности их названий.

Перенесите в тетрадь названия физических законов и в квадратные скобки впишите порядковый номер формулировки, соответствующей названному закону.

  • Первый закон Ньютона (закон инерции) ;
  • второй закон Ньютона ;
  • третий закон Ньютона ;
  • закон всемирного тяготения ;
  • закон сохранения импульса ;
  • закон сохранения механической энергии .
  1. Ускорение тела прямо пропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе.
  2. Механическая энергия замкнутой системы тел остаётся постоянной, если между телами системы действуют только силы тяготения и силы упругости и отсутствуют силы трения.
  3. Два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними.
  4. Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.
  5. Существуют такие системы отсчёта, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действия других тел компенсируются.
  6. Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.

Проверь себя

Выполните задания, предложенные в электронном приложении.



Публикации по теме