Определить изменение внутренней энергии. Купить диплом о высшем образовании недорого

Энергия представляет собой общую меру различных форм движения материи. Соответственно формам движения материи различают и виды энергии – механическую, электрическую, химическую и т.д. Всякая термодинамическая система в любом состоянии обладает некоторым запасом энергии, существование которой было доказано Р.Клаузиусом (1850) и получило название внутренней энергии.

Внутренняя энергия (U) – это энергия всех видов движения микрочастиц, составляющих систему, и энергия их взаимодействия между собой.

Внутренняя энергия складывается из энергии поступательного, вращательного и колебательного движения частиц, энергии межмолекулярного и внутримолекулярного, внутриатомного и внутриядерного взаимодействий и др.

Энергию внутримолекулярного взаимодействия, т.е. энергию взаимодействия атомов в молекуле, часто называют химической энергией . Изменение этой энергии имеет место при химических превращениях.

Для термодинамического анализа нет необходимости знать из каких форм движения материи складывается внутренняя энергия.

Запас внутренней энергии зависит только от состояния системы. Следовательно, внутреннюю энергию можно рассматривать как одну их характеристик этого состояния наравне с такими величинами, как, давление, температура.

Каждому состоянию системы соответствует строго определенное значение каждого из его свойств.

Если гомогенная система в начальном состоянии имеет объем V 1 , давление P 1 , температуру T 1 , внутреннюю энергию U 1 , удельную электропроводностьæ 1 и т.д., а в конечном состоянии эти свойства соответственно равны V 2 , P 2 , T 2 , U 2, æ 2 и т.д., то изменение каждого свойства при переходе системы из начального состояния в конечное будет одним и тем же, независимо от того, каким путем переходит система из одного состояния в другое: первым, вторым или третьим (рис. 1.4).

Рис. 1.4 Независимость свойств системы от пути ее перехода

из обычного состояния в другое

Т.е. (U 2 - U 1) I = (U 2 - U 1) II = (U 2 - U 1) III (1.4)

Где цифры I, II, III и т.д. указывают пути процесса. Следовательно, если система из начального состояния (1) в конечное (2) перейдет по одному пути, а из конечного в начале – по другому пути, т.е. совершится круговой процесс (цикл), то изменение каждого свойства системы будет равно нулю.

Таким образом, изменение функции состояния системы не зависит от пути процесса, а зависит лишь от начального и конечного состояний системы. Бесконечно малое изменение свойств системы обозначается обычно знаком дифференциала d. Например, dU– бесконечное малое изменение внутренней энергии и т.д.

Формы обмена энергией

В соответствии с различными формами движения материи и различными видами энергии существуют различные формы обмена энергией (передача энергии) – формы взаимодействия. В термодинамике рассматриваются две формы обмена энергии между системой и окружающей средой. Это работа и теплота.

Работа. Наиболее наглядной формой обмена энергией является механическая работа, соответствующая механической форме движения материи. Она производится при перемещении тела под действием механической силы. В соответствии с другими формами движения материи различают и другие виды работы: электрическую, химическую и т.д. Работа является формой передачи упорядоченного, организованного движения, так как при совершении работы частицы тела движутся организованно в одном направлении. Например, совершение работы при расширении газа. Молекулы газа, находящегося в цилиндре под поршнем, находятся в хаотическом, неупорядоченном движении. Когда же газ начнет перемещать поршень, то есть совершать механическую работу, на беспорядочное движение молекул газа будет накладываться организованное движение: все молекулы получают некоторое смещение в направлении движения поршня. Электрическая работа так же связана с организованным движением в определенном направлении заряженных частиц материи.

Поскольку, работа является мерой передаваемой энергии, количество ее измеряется в тех же единицах, что и энергия.

Теплота . Форму обмена энергией, соответствующую хаотическому движению микрочастиц, составляющих систему, называюттеплообменом , а количество энергии, переданное при теплообмене, называюттеплотой .

Теплообмен не связан с изменением положения тел, составляющих термодинамическую систему, и состоит в непосредственной передаче энергии молекулами одного тела молекулам другого при их контакте.

Представим себе изолированный сосуд (систему) разделенную на две части теплопроводной перегородкой ав (рис. 1.5). Допустим, что в обеих частях сосуда находится газ.

Рис. 1.5. К понятию о теплоте

В левой половине сосуда температура газа Т 1 , а в правой Т 2 . Если Т 1 > Т 2 , то средняя кинетическая энергия () молекул газа в левой части сосуда, будет больше средней кинетической энергии () в правой половине сосуда.

В результате непрерывных соударений молекул о перегородку в левой половине сосуда часть энергии их передается молекулам перегородки. Молекулы же газа, находящегося в правой половине сосуда, сталкиваясь с перегородкой, приобретут какую-то часть энергии от ее молекул.

В результате этих столкновений кинетическая энергия молекул в левой половине сосуда будет уменьшаться, а в правой – увеличиваться; температуры Т 1 и Т 2 будут выравниваться.

Поскольку теплота является метой энергии, ее количество измеряется в тех же единицах, что энергия. Таким образом, теплообмен и работа являются формами обмена энергией, а количество теплоты и количество работы - мерами передаваемой энергии. Различие между ними состоит в том, что теплота – это форма передачи микрофизического, неупорядоченного движения частиц (и, соответственно, энергии этого движения), а работа представляет собой форму передачи энергии упорядоченного, организованного движения материи.

Иногда говорят: теплота (или работа) подводится или отводится от системы, при этом следует понимать, что подводиться и отводится не теплота и работа, а энергия, поэтому следует не употреблять такого рода выражений как «запас теплоты» или «теплота содержится».

Являясь формами обмена энергией (формами взаимодействия) системы с окружающей средой, теплота и работа не могут быть связаны с каким-либо определенным состоянием системы, не могут являться ее свойствами, а, следовательно, и функциями ее состояния. Это означает, что если система проходит из начального состояния (1) в конечное (2) различными путями, то теплота и работа будут иметь разные значения для разных путей перехода (рис. 1.6)

Конечное количество теплоты и работы обозначают Q и A, а бесконечно малые значения соответственно через δQ и δA. Величины δQ и δA в отличие от dU не являются полным дифференциалом, т.к. Q и A не являются функциями состояния.

Когда же путь процесса буде предопределен, работа и теплота приобретут свойства функций состояния системы, т.е. их численные значения будут определяться только начальным и конечным состояниями системы.

ВНУТРЕННЯЯ ЭНЕРГИЯ термодинамич. ф-ция состояния системы, ее энергия, определяемая внутр. состоянием. Внутренняя энергия складывается в осн. из кинетич. энергии движения частиц (атомов , молекул , ионов , электронов) и энергии взаимод. между ними (внутри- и межмолекулярной). На внутреннюю энергию влияет изменение внутр. состояния системы под действием внеш. поля; во внутреннюю энергию входит, в частности, энергия, связанная с поляризацией диэлектрика во внеш. электрич. поле и намагничиванием парамагнетика во внеш. магн. поле. Кинетич. энергия системы как целого и потенциальная энергия, обусловленная пространств. расположением системы, во внутреннюю энергию не включаются. В термодинамике определяется лишь изменение внутренней энергии в разл. процессах. Поэтому внутреннюю энергию задают с точностью до нек-рого постоянного слагаемого, зависящего от энергии, принятой за нуль отсчета.

Внутренняя энергия U как ф-ция состояния вводится первым началом термодинамики , согласно к-рому разность между теплотой Q, переданной системе, и работой W, совершаемой системой, зависит только от начального и конечного состояний системы и не зависит от пути перехода, т.е. представляет изменение ф-ции состояния

где U 1 и U 2 - внутренняя энергия системы в начальном и конечном состояниях соответственно. Ур-ние (1) выражает закон сохранения энергии в применении к термодинамич. процессам, т. е. процессам, в к-рых происходит передача теплоты. Для циклич. процесса, возвращающего систему в начальное состояние, . В изохорных процессах, т.е. процессах при постоянном объеме, система не совершает работы за счет расширения, W=0 и теплота, переданная системе, равна приращению внутренней энергии: Q v =. Для адиабатич. процессов, когда Q = 0, = - W.

Внутренняя энергия системы как ф-ция ее энтропии S, объема V и числа молей m i i-того компонента представляет собой термодинамический потенциал . Это является следствием первого и второго начал термодинамики и выражается соотношением:

"

где Т - абс. т-ра, р-давление,-хим. потенциал i-того компонента. Знак равенства относится к равновесным процессам, знак неравенства-к неравновесным. Для системы с заданными значениями S, V, m i (закрытая система в жесткой адиабатной оболочке) внутренняя энергия при равновесии минимальна. Убыль внутренней энергии в обратимых процессах при постоянных V и S равна макс. полезной работе (см. Максимальная работа реакции).

Зависимость внутренней энергии равновесной системы от т-ры и объема U =f(T, V)наз. калорическим уравнением состояния . Производная внутренней энергии по т-ре при постоянном объеме равна изохорной теплоемкости :

Внутренняя энергия идеального газа от объема не зависит и определяется только т-рой.

Экспериментально определяют значение внутренней энергии в-ва, отсчитываемое от ее значения при абс. нуле т-ры. Определение внутренней энергии требует данных о теплоемкости С V (Т), теплотах фазовых переходов , об ур-нии состояния. Изменение внутренней энергии при хим. р-циях (в частности, стандартная внутренняя энергия образования в-ва) определяется по данным о тепловых эффектах р-ций, а также по спектральным данным. Теоретич. расчет внутренней энергии осуществляется методами статистич. термодинамики , к-рая определяет внутреннюю энергию как среднюю энергию системы в заданных условиях изоляции (напр., при заданных Т, V, m i). Внутренняя энергия одноатомного идеального газа складывается из средней энергии поступат. движения молекул и средней энергии возбужденных электронных состояний; для двух- и многоатомных газов к этому значению добавляется также средняя энергия вращения молекул и их колебаний около положения равновесия . Внутренняя энергия 1

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек ) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп ), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U . Единицей внутренней энергии является 1 джоуль (1 Дж ). U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутреннюю энергию можно изменить при совершении работы . Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи , о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Наряду с механической энергией, любое тело (или система) обладает внутренней энергией. Внутренняя энергия – энергия покоя. Она складывается из теплового хаотического движения молекул, составляющих тело, потенциальной энергии их взаимного расположения, кинетической и потенциальной энергии электронов в атомах, нуклонов в ядрах и так далее.

В термодинамике важно знать не абсолютное значение внутренней энергии, а её изменение.

В термодинамических процессах изменяется только кинетическая энергия движущихся молекул (тепловой энергии недостаточно, чтобы изменить строение атома, а тем более ядра). Следовательно, фактически под внутренней энергией в термодинамике подразумевают энергию теплового хаотического движения молекул.

Внутренняя энергия U одного моля идеального газа равна:

Таким образом, внутренняя энергия зависит только от температуры. Внутренняя энергия U является функцией состояния системы, независимо от предыстории.

Понятно, что в общем случае термодинамическая система может обладать как внутренней, так и механической энергией, и разные системы могут обмениваться этими видами энергии.

Обмен механической энергией характеризуется совершенной работой А, а обмен внутренней энергией – количеством переданного тепла Q.

Например, зимой вы бросили в снег горячий камень. За счёт запаса потенциальной энергии совершена механическая работа по смятию снега, а за счёт запаса внутренней энергии снег был растоплен. Если же камень был холодный, т.е. температура камня равна температуре среды, то будет совершена только работа, но не будет обмена внутренней энергией.

Итак, работа и теплота не есть особые формы энергии. Нельзя говорить о запасе теплоты или работы. Это мера переданной другой системе механической или внутренней энергии. Вот о запасе этих энергий можно говорить. Кроме того, механическая энергия может переходить в тепловую энергию и обратно. Например, если стучать молотком по наковальне, то через некоторое время молоток и наковальня нагреются (это пример диссипации энергии).

Можно привести ещё массу примеров превращения одной формы энергии в другую.

Опыт показывает, что во всех случаях, превращение механической энергии в тепловую и обратно совершается всегда в строго эквивалентных количествах. В этом и состоит суть первого начала термодинамики, следующего из закона сохранения энергии.

Количество теплоты, сообщаемой телу, идёт на увеличение внутренней энергии и на совершение телом работы:

, (4.1.1)

– это и есть первое начало термодинамики , или закон сохранения энергии в термодинамике.

Правило знаков: если тепло передаётся от окружающей среды данной системе, и если система производит работу над окружающими телами, при этом . Учитывая правило знаков, первое начало термодинамики можно записать в виде:

В этом выражении U – функция состояния системы; dU – её полный дифференциал, а δQ и δА таковыми не являются. В каждом состоянии система обладает определенным и только таким значением внутренней энергии, поэтому можно записать:

,

Важно отметить, что теплота Q и работа А зависят от того, каким образом совершен переход из состояния 1 в состояние 2 (изохорически, адиабатически и т.д.), а внутренняя энергия U не зависит. При этом нельзя сказать, что система обладает определенным для данного состояния значением теплоты и работы.

Из формулы (4.1.2) следует, что количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях (Дж).

Особое значение в термодинамике имеют круговые или циклические процессы, при которых система, пройдя ряд состояний, возвращается в исходное. На рисунке 4.1 изображен циклический процесс 1–а –2–б –1, при этом была совершена работа А.


Рис. 4.1

Так как U – функция состояния, то

(4.1.3)

Это справедливо для любой функции состояния.

Если то согласно первому началу термодинамики , т.е. нельзя построить периодически действующий двигатель, который совершал бы бóльшую работу, чем количество сообщенной ему извне энергии. Иными словами, вечный двигатель первого рода невозможен. Это одна из формулировок первого начала термодинамики.

Следует отметить, что первое начало термодинамики не указывает, в каком направлении идут процессы изменения состояния, что является одним из его недостатков.

Любое макроскопическое тело имеет энер-гию , обусловленную его микросостоянием. Эта энергия называется внутренней (обо-значается U ). Она равняется энергии дви-жения и взаимодействия микрочастиц, из которых состоит тело. Так, внутренняя энер-гия идеального газа состоит из кинетической энергии всех его молекул, поскольку их вза-имодействием в данном случае можно пре-небречь. Поэтому его внутренняя энергия за-висит лишь от температуры газа (U ~ T ).

Модель идеального газа пре-дусматривает, что молекулы на-ходятся на расстоянии несколь-ких диаметров друг от друга. Поэтому энергия их взаимо-действия намного меньше энер-гии движения и ее можно не учитывать.

У реальных газов, жидкостей и твердых тел взаимодействием микрочастиц (атомов, молекул, ионов и т. п.) пренебречь нельзя, поскольку оно существенно влияет на их свойства. Поэтому их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия. Их внутренняя энергия, кроме температуры T, будет за-висеть также от объема V, поскольку изме-нение объема влияет на расстояние между атомами и молекулами, а, следовательно, и на потенциальную энергию их взаимодей-ствия между собой.

Внутренняя энергия — это функция состояния тела, которая опреде-ляется его температурой T и объемом V.

Внутренняя энергия однознач-но определяется температурой T и объемом тела V, характе-ризующими его состояние: U = U(T, V)

Чтобы изменить внутреннюю энергию те-ла, нужно фактически изменить или кинетическую энергию теплового движения мик-рочастиц, или потенциальную энергию их взаимодействия (или и ту и другую вместе). Как известно, это можно сделать двумя способами — путем теплообмена или вслед-ствие выполнения работы. В первом случае это происходит за счет передачи опреде-ленного количества теплоты Q; во втором — вследствие выполнения работы A.

Таким образом, количество теплоты и выполненная работа являются мерой изме-нения внутренней энергии тела :

Δ U = Q + A.

Изменение внутренней энер-гии происходит за счет отдан-ного или полученного телом не-которого количества теплоты или вследствие выполнения ра-боты.

Если имеет место лишь теплообмен, то изменение внутренней энергии происходит путем получения или отдачи определенного количества теплоты: Δ U = Q. При нагрева-нии или охлаждении тела оно равно:

Δ U = Q = cm(T 2 — Т 1) = cm ΔT.

При плавлении или кристаллизации твер-дых тел внутренняя энергия изменяется за счет изменения потенциальной энергии вза-имодействия микрочастиц, ведь происходят структурные изменения строения вещества. В данном случае изменение внутренней энер-гии равняется теплоте плавления (кристал-лизации) тела: ΔU — Q пл = λ m, где λ — удель-ная теплота плавления (кристаллизации) твер-дого тела.

Испарение жидкостей или конденсация пара также вызывает изменение внутренней энергии , которая равна теплоте парообра-зования: Δ U = Q п = rm, где r — удельная теп-лота парообразования (конденсации) жидко-сти.

Изменение внутренней энергии тела вслед-ствие выполнения механической работы (без теплообмена) численно равно значению этой работы: Δ U = A.

Если изменение внутренней энергии происходит вследст-вие теплообмена, то Δ U = Q = cm(T 2 — T 1), или Δ U = Q пл = λ m, или Δ U = Q п = rm.

Следовательно, с точки зрения моле-кулярной физики: Материал с сайта

Внутренняя энергия тела является суммой кинетической энергии теп-лового движения атомов, молекул или других частиц, из которых оно состоит, и потен-циальной энергии взаимодействия между ни-ми; с термодинамической точки зрения она является функцией состояния тела (системы тел), которая однозначно определяется его макропараметрами — температурой T и объе-мом V.

Таким образом, внутренняя энергия — это энергия системы, которая зависит от ее внутреннего состояния. Она состоит из энергии теплового движения всех микро-частиц системы (молекул, атомов, ионов, электронов и т. п.) и энергии их взаи-модействия. Полное значение внутренней энергии определить практически невоз-можно, поэтому вычисляют изменение внут-ренней энергии Δ U, которое происходит вследствие теплопередачи и выполнения ра-боты.

Внутренняя энергия тела равна сумме кинетической энергии теплового движения и потен-циальной энергии взаимодей-ствия составляющих его мик-рочастиц.

На этой странице материал по темам:

  • От чего зависит внутренняя энергия твердого тела

  • Способ изменения внутренней энергии тела краткий конспект

  • От каких макропараметров зависит внутренняя энергия тела

  • Краткое сообщение "об использования внутренней энергии тела"



Публикации по теме