Превращение и сохранение энергии при гармонических колебаниях. Превращение энергии при гармонических колебаниях — Гипермаркет знаний

>> Превращение энергии при гармонических колебаниях


§24 ПРЕВРАЩЕНИЕ ЭНЕРГИИ ПРИ ГАРМОНИЧЕСКИХ КОЛЕБАНИЯХ

Рассмотрим превращение энергии при гармонических колебаниях в двух случаях: в системе нет трения; в системе есть трение.

Превращения энергии в системах без трения. Смещая шарик, прикрепленный к пружине (см. рис. 3.3), вправо на расстояние х m , мы сообщаем колебательной системе потенциальную энергию:

При движении шарика влево деформация пружины становится меньше, и потенциальная энергия системы уменьшается. Но одновременно увеличивается скорость и, следовательно, возрастает кинетическая энергия. В момент прохождения шариком положения равновесия потенциальная энергия колебательной системы становится равной нулю (W n = 0 при х = 0). Кинетическая же энергия достигает максимума.

После прохождения положения равновесия скорость шарика начинает уменьшаться. Следовательно, уменьшается и кинетическая энергия. Потенциальная же энергия системы снова увеличивается. В крайней левой точке она достигает максимума, а кинетическая энергия становится равной нулю. Таким образом, при колебаниях периодически происходит переход потенциальной энергии в кинетическую и обратно. Нетрудно проследить за тем, что такие же превращения механической энергии из одного ее вида в другой происходят и в случае математического маятника.

Полная механическая энергия при колебаниях тела, прикрепленного к пружине, равна сумме кинетической и потенциальной энергий колебательной системы:

Кинетическая и потенциальная энергии периодически изменяются. Но полная механическая энергия изолированной системы, в которой отсутствуют силы сопротивления, сохраняется (согласно закону сохранения механической энергии) неизменной. Она равна либо потенциальной энергии в момент максимального отклонения от положения равновесия, либо же кинетической энергии в момент, когда тело проходит положение равновесия:

Энергия колеблющегося тела прямо пропорциональна квадрату амплитуды колебаний координаты или квадрату амплитуды колебаний скорости (см. формулу (3.26)).

Затухающие колебания. Свободные колебания груза, прикрепленного к пружине, или маятника являются гармоническими лишь в том случае, когда нет трения. Но силы трения, или, точнее, силы сопротивления окружающей среды, хотя, может быть, и малые, всегда действуют на колеблющееся тело.

Силы сопротивления совершают отрицательную работу и тем самым уменьшают механическую энергию системы. Поэтому с течением времени максимальные отклонения тела от положения равновесия становятся все меньше и меньше. В конце концов, после того как запас механической энергии окажется исчерпанным, колебания прекратятся совсем. Колебания при наличии сил сопротивления являются затухающими.

График зависимости координаты тела от времени при затухающих колебаниях изображен на рисунке 3.10. Подобный график может вычертить само колеблющееся тело, например маятник .

На рисунке 3.11 изображен маятник с песочницей. Маятник на равномерно движущемся под ним листе картона струйкой песка вычерчивает график зависимости своей координаты от времени. Это простой метод временной развертки колебаний, дающий достаточно полное представление о процессе колебательного движения. При небольшом сопротивлении затухание колебаний на протяжении нескольких периодов мало. Если же к нитям подвеса прикрепить лист плотной бумаги для увеличения силы сопротивления, го затухание станет значительным.

В автомобилях применяются специальные для гашения колебаний кузова при езде по неровной дороге. При колебаниях кузова связанный с ним поршень движется в цилиндре, заполненном жидкостью. Жидкость перетекает через отверстия в поршне, что приводит к появлению больших сил сопротивления и быстрому затуханию колебаний.

Энергия колеблющегося тела при отсутствии сил трения сохраняется неизменной.

Если на тела системы действуют силы сопротивления, то колебания являются затухающими.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Механическими колебаниями называют движения тела, повторяющиеся точно или приблизительно через одинаковые промежутки времени. Основными характеристиками механических колебаний являются: смещение, амплитуда, частота, период. Смещение - это отклонение тела от положения равновесия. Амплитуда - модуль максимального отклонения от положения равновесия. Частота - число полных колебаний, совершаемых в единицу времени. Период - время одного полного колебания, т. е. минимальный промежуток времени, через который происходит повторение процесса. Период и частота связаны соотношением: v = 1/Т. Простейший вид колебательного движения - гармонические колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса (рис. 9). Свободными называют колебания, которые совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на систему, совершающую колебания. Например, колебания груза на нити (рис. 10). Рассмотрим процесс превращения энергии на примере колебаний груза на нити (см. рис. 10). При отклонении маятника от положения равновесия он поднимается на высоту h относительно нулевого уровня, следовательно, в точке А маятник
обладает потенциальной энергией mgh. При движении к положению равновесия, к точке О, уменьшается высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия mgh превратится в кинетическую энергию mv^2/2. В положении равновесия кинетическая энергия имеет максимальное значение, а потенциальная энергия минимальна. После прохождения положения равновесия происходит превращение кинетической энергии в потенциальную, скорость маятника уменьшается и при максимальном отклонении от положения равновесия становится равной нулю. При колебательном движении всегда происходят периодические превращения его кинетической и потенциальной энергии.
При свободных механических колебаниях неизбежно происходит потеря энергии на преодоление сил сопротивления. Если колебания происходят под действием периодической внешней силы, то такие колебания называют вынужденными. Например, родители раскачивают ребенка на качелях, поршень движется в цилиндре двигателя автомобиля, колеблются нож электробритвы и игла швейной машины. Характер вынужденных колебаний зависит от характера действия внешней силы, от ее величины, направления, частоты действия и не зависит от размеров и свойств колеблющегося тела. Например, фундамент мотора, на котором он закреплен, совершает вынужденные колебания с частотой, определяемой только числом оборотов мотора, и не зависит от размеров фундамента.


При совпадении частоты внешней силы и частоты собственных колебаний тела амплитуда вынужденных колебаний резко возрастает. Такое явление называют механическим резонансом. Графически зависимость амплитуды вынужденных колебаний от частоты действия внешней силы показана на рисунке 11.
Явление резонанса может быть причиной разрушения машин, зданий, мостов, если собственные их частоты совпадают с частотой периодически действующей силы. Поэтому, например, двигатели в автомобилях устанавливают на специальных амортизаторах, а воинским подразделениям при движении по мосту запрещается идти «в ногу».
При отсутствии трения амплитуда вынужденных колебаний при резонансе должна возрастать со временем неограниченно. В реальных системах амплитуда в установившемся режиме резонанса определяется условием потерь энергии в течение периода и работы внешней силы за то же время. Чем меньше трение, тем больше амплитуда при резонансе.

Превращения энергии при гармонических колебаниях.

При колебаниях математического маятника полная энергия системы складывается из кинœетической энергии материальной точки (шарика) и потенциальной энергии материальной точки в поле сил тяготения. При колебаниях пружинного маятника полная энергия складывается из кинœетической энергии шарика и потенциальной энергии упругой деформации пружины:

При прохождении положения равновесия и в первом и во втором маятнике кинœетическая энергия шарика достигает максимального значения, потенциальная энергия системы равна нулю. При колебаниях происходит периодическое превращение кинœетической энергии в потенциальную энергию системы, полная энергия системы при этом остается неизменной, если отсутствуют силы сопротивления (закон сохранения механической энергии). К примеру, для пружинного маятника можно записать:

В колебательном контуре (рис.14.1.с) полная энергия системы складывается из энергии заряженного конденсатора (энергии электрического поля )и энергии катушки с током (энергии магнитного поля . Когда заряд конденсатора максимален, ток в катушке равен нулю (см. формулы 14.11 и 14.12), энергия электрического поля конденсатора максимальна, энергия магнитного поля катушки равна нулю. В момент времени, когда заряд конденсатора равен нулю, ток в катушке максимален, энергия электрического поля конденсатора равна нулю, энергия магнитного поля катушки максимальна. Также как и в механических осцилляторах, в колебательном контуре происходит периодическое превращение энергии электрического поля в энергию магнитного поля, полная энергия системы при этом остается неизменной, если отсутствует активное сопротивление R . Можно записать:

. (14.15)

В случае если в процессе колебаний на математический или на пружинный маятник действуют внешние силы сопротивления, а в цепи колебательного контура есть активное сопротивление R , энергия колебаний, а значит, и амплитуда колебаний будут уменьшаться. Такие колебания называются затухающими колебаниями , на рисунке 14.2 приведен график зависимости колеблющейся величины Х от времени.

Рис. 14.3

§ 16. Переменный электрический ток.

С источниками постоянного тока мы уже знакомы, знаем, для чего они нужны, знаем законы постоянного тока. Но гораздо большее практическое значение в нашей жизни имеет переменный электрический ток, который используется в быту, на производстве и других областях человеческой деятельности. Сила тока и напряжение переменного тока (к примеру, в осветительной сети нашей квартиры) меняются со временем по гармоническому закону. Частота промышленного переменного тока – 50Гц. Источники переменного тока разнообразны по своему устройству и характеристикам. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока. На рис.14.3 рамка вращается вокруг вертикальной оси ОО , перпендикулярной силовым линиям магнитного поля, с постоянной угловой скоростью . Угол α между вектором и нормалью меняется по закону , магнитный поток через поверхность S , ограниченную рамкой, меняется со временем, в рамке возникает ЭДС индукции.

Рассмотрим превращение энергии при гармонических колебаниях для двух случаев: в системе нет трения; трение в системе есть. Превращение энергии в системах без трения. Сместив шарик, прикрепленный к пружине, вправо на расстояние хт, мы сообщаем колебательной системе запас потенциальной энергии: При движении шарика влево деформация пружины становится меньше и потенциальная энергия уменьшается. Но одновременно увеличивается скорость и, следовательно, растет кинетическая энергия. В момент прохождения шариком положения равновесия потенциальная энергия становится минимальной. Кинетическая же энергия достигает максимума. После прохождения положения равновесия скорость начинает уменьшаться. Следовательно, уменьшается и кинетическая энергия. Потенциальная же энергия снова растет. В крайней левой точке она достигает максимума, а кинетическая энергия становится равной нулю. Таким образом, при колебаниях периодически происходит переход потенциальной энергии в кинетическую и обратно. Это же самое можно проследить и на колебаниях маятника. Полная механическая энергия при колебаниях тела, прикрепленного к пружине, равна сумме кинетической и потенциальной энергий: Кинетическая и потенциальная энергии периодически изменяются. Но полная механическая энергия замкнутой системы, в которой отсутствуют силы сопротивления, остается согласно закону сохранения энергии неизменной. Она равна либо потенциальной энергии в момент максимального отклонения от положения равновесия, либо же кинетической энергии в момент, когда тело проходит положение равновесия: Энергия колеблющегося тела прямо пропорциональна квадрату амплитуды колебаний координаты или квадрату амплитуды колебаний скорости Затухающие колебания. Свободные колебания груза, прикрепленного к пружине, или маятника являются гармоническими лишь в том случае, когда нет трения. Но силы трения, или, точнее, силы. сопротивления, хотя, может быть, и малые, всегда действуют на колеблющееся тело. Силы сопротивления совершают отрицательную работу и тем самым уменьшают механическую энергию системы. Поэтому с течением времени максимальные отклонения тела от положения равновесия становятся все меньше и меньше. В конце концов, после того как запас механической энергии окажется исчерпанным, колебания прекратятся совсем. Колебания при наличии сил сопротивления являются затухающими. График зависимости координаты тела от времени при затухающих колебаниях изображен на рисунке 63. Подобный график может вычертить само колеблющееся тело, например маятник. На рисунке 64 изображен маятник с песочницей. Маятник на равномерно движущемся под ним листе картона струйкой песка вычерчивает график зависимости координат от времени. Это простой метод временной развертки колебаний, дающий весьма полное представление о процессе колебательного движения. При небольшом сопротивлении затухание колебаний на протяжении нескольких периодов мало. Если же к нитям подвеса прикрепить лист плотной бумаги для увеличения силы сопротивления, то затухание станет значительным. В автомобилях применяются специальные амортизаторы для гашения колебаний кузова на рессорах при езде по неровной дороге. При колебаниях кузова связанный с ним поршень движется в цилиндре, заполненном жидкостью. Жидкость перетекает через отверстия в поршне, что приводит к появлению больших сил сопротивления и быстрому затуханию колебаний. Энергия колеблющегося тела при отсутствии сил трения остается неизменной. Если в системе есть силы сопротивления, то колебания являются затухающими.

При изучении этой темы решают задачи по кинематике и динамике упругих колебаний. Полезно при этом сопоставление упругих колебаний с уже рассмотренными колебаниями маятника для выявления как их общих, так и специфических черт.

Решение задач требует применения второго закона Ньютона, закона Гука и формул кинематики гармонического колебательного движения.

Период упругих гармонических колебаний тела массой определяют по формуле (№ 758). Эта формула позволяет определить период различных гармонических колебаний, если известно значение Для упругих колебаний это коэффициент жесткости, а для колебаний математического маятника (№ 748).

В задачах о превращениях энергии в колебательном движении в основном рассматривают превращение кинетической энергии в потенциальную. Но для случая затухающих колебаний учитывают также превращение механической энергии во внутреннюю. Кинетическая энергия упругих колебаний

Потенциальная энергия

Будут ли отличаться и как колебания тел разной массы на одной и той же пружине? Ответ проверьте на опыте.

Ответ. Тело большей массы будет иметь больший период колебаний. Из формулы следует, что при одной и той же силе упругости тело большей массы будет иметь меньшее ускорение и, следовательно, будет двигаться медленнее. Это можно проверить, приводя в колебание подвешенные на динамометре грузы разной массы.

757(э). На пружину подвесили груз и затем поддерживали его так, чтобы пружина не растягивалась. Опишите, как будет двигаться груз, если убрать поддерживающую его опору. Ответ проверьте на опыте.

Решение, Отпустим груз свободно падать вниз. Тогда он растянет пружину на величину которую можно определить из соотношения

По закону сохранения энергии при обратном движении вверх груз поднимается на высоту будет совершать колебания с амплитудой h. Если же груз подвесить на пружине, он растянет ее на величину

Следовательно, положение, в котором висит груз в состоянии покоя, является центром, около которого совершаются колебания. Этот вывод легко проверить на «мягкой» длинной пружине, например от прибора «ведерко Архимеда».

758. Тело массой под действием пружины, имеющей жесткость совершает без трения колебания в горизонтальной плоскости вдоль стержня а (рис. 238). Определите период колебания тела, используя закон сохранения энергии.

Решение. В крайнем положении вся энергия тела потенциальная, а в среднем - кинетическая. По закону сохранения энергии

Для положения равновесия Следовательно,

759(э). Определите коэффициент жесткости резиновой нити и рассчитайте период колебания подвешенной на ней гири массой . Ответ проверьте на опыте.

Решение. Для ответа на воррос задачи учащиеся должен иметь резиновую нить, грузик массой 100 в, линейку и секундомер

Подвесив груз на нить, сначала рассчитывают величину численно равную силе, которая растягивает нить на единицу длины. В одном из опытов были получены следующие данные. Начальная длина нити см, конечная Откуда см

Измерив по секундомеру время 10-20 полных колебаний груза, убеждаются, что период, найденный расчетами, совпадает с полученным из опыта.

760. Используя решение задач 757 и 758, определите период колебаний вагона на рессорах, если его статическая осадка равна

Решение.

Следовательно,

Мы получили интересную формулу, по которой легко определить период упругих колебаний тела, зная только величину

761 (э). Используя формулу рассчитайте, а затем проверьте на опыте период колебаний на пружине от «ведерка Архимеда» грузов массой 100, 300, 400 г.

762. Пользуясь формулой получите формулу периода колебаний математического маятника.

Решение. Для математического маятника поэтому

763. Используя условие и решение задачи 758, найдите закон, по которому изменяется сила упругости пружины, и запишите уравнения данного гармонического колебательного движения, если в крайнем положении тело обладало энергией

Решение.

Примем, что Амплитуду колебаний А определим из формулы

Аналогично подставив значение массы, амплитуды и периода в общие формулы смещения, скорости и ускорения, получим:

Формулу ускорения можно было такжеполучить, пользуясь формулои силы

764. Математический маятник, имеющий массу и длину отклонили на 5 см. Какую скорость ускорение а и потенциальную энергию он будет иметь на расстоянии см от положения равновесия?



Публикации по теме