Развитие систем обмена веществ регуляции. Обмен веществ как основная функция организма человека

В регуляции и осуществлении обмена веществ участвуют разные отделы нервной системы. Обмен веществ и энергии, приспосабливающие его к потребностям организма, происходят под влиянием коры полушарий. Так, у тренированных спортсменов на стадионе и в спортивном зале газообмен повышается задолго до начала соревнований. Повышение обмена наблюдается и у болельщиков, несмотря на то что они только зрительно участвуют в происходящем. Ясно, что здесь имеет место рефлекторная регуляция обмена веществ и энергии.

В продолговатом мозге находятся нервные центры, влияющие на обмен белков и углеводов. Вегетативная нервная система непосредственно и через гормоны повышает или понижает обмен веществ в органах. Симпатические импульсы вызывают превращение резервного гликогена печени в глюкозу, а парасимпатические — превращение глюкозы в гликоген. При двигательной деятельности вегетативная нервная система восстанавливает работоспособность мышц, изменяет газообмен и поддерживает температуру тела на определенном уровне.

Гормоны желез внутренней секреции регулируют обмен белков, жиров и углеводов. Гормон поджелудочной железы инсулин стимулирует отложение гликогена в печени и образование жира из углеводов. Гормон надпочечников адреналин в обычных условиях в небольших количествах циркулирует в крови. Мышечная работа или сигналы, предвещающие ее, а также эмоциональное возбуждение вызывают усиленное поступление адреналина в кровь. Как и центральная нервная система, адреналин вызывает возбуждение симпатической нервной системы, и они совместно воздействуют на обмен веществ. В частности, мобилизация гликогена печени для поддержания уровня сахара в крови при мышечной работе осуществляется именно при помощи адреналосимпатической системы.

«Анатомия и физиология человека», М.С.Миловзорова

В состав тела человека входят многие химические элементы. Содержание некоторых химических элементов в теле человека: Элементы, обязательно присутствующие в организме: Кальций Фосфор Калий Сера Хлор Натрий Магний Железо Йод Микроэлементы с незначительным содержанием в теле: Медь Марганец Цинк Фтор Кремний Мышьяк Алюминий Свинец Литий В организме они присутствуют главным образом в виде солей и некоторых кислот….

Химические превращения веществ в организме являются частью сложнейшего процесса, называемого обменом веществ. Из окружающей среды человек получав питательные вещества, воду, минеральные соли и витамины. В окружающую среду он выделяет углекислый газ, некоторое количество влаги, минеральных солей, рганических веществ. В процессе обмена веществ человек получает энергию, аккумулированную в продуктах животного и растительного происхождения, и отдает тепловую энергию…

Из общего обмена веществ 40—50% осуществляется в скелетной мускулатуре. Любая мышечная деятельность увеличивает обмен веществ в мышцах. При спокойном сидении по сравнению со спокойным лежанием он возрастает на 12%. Стояние увеличивает обмен веществ на 20%, а бег — на 400%. Причем хорошо тренированный к данному виду мышечной работы человек тратит на ее выполнении меньше энергии, чем новичок. Объясняется…

Образование и выделение продуктов распада Обмен веществ в организме заканчивается образованием продуктов распада. Они вырабатываются в клетках в результате тканевого обмена. К ним относятся углекислый газ, вода, органические вещества (например, молочная кислота), минеральные вещества — соли, железо и другие металлы. Организм освобождается от них через органы выделения. Помимо конечных продуктов, из организма выводятся выщества, образовавшиеся при разрушении отмирающих…

Выделение продуктов распада является последним этапом обмена белков, жиров и углеводов, очень важным для нормального функционирования и существования организма. Конечные и другие выделяемые продукты и некоторые вещества, введенные с лекарствами, накапливаясь в тканях, могут отравить организм. Через органы выделения они выводятся из организма. Главная функция органов выделения состоит в поддержании относительного постоянства внутренней среды организма,…

Центральной структурой, регулирующей обмен веществ и энергии, яв­ляется гипоталамус. В гипоталамусе локализованы ядра и центры регуляции голода и насыщения, осморегуляции и энергообмена. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды организма. Также здесь формируются управляющие сигналы, которые посредством эфферентных систем приспосабливают ход метаболиз­ма к потребностям конкретного организма. Эфферентными звеньями системы ре­гуляции обмена являются симпатический и парасимпатический от­делы вегетативной нервной системы и эндокринная система.

Обмен веществ и получение аккумулируемой в АТФ энергии происходят внутри клеток. В связи с этим важнейшим эффектором, через кото­рый вегетативная нервная и эндокринная системы воздействуют на обмен веществ и энергии, являются клетки органов и тканей. Регу­ляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Воздействие гипоталамуса на обмен белков осуществляется через систему гипоталамус-гипофиз-щитовидная железа. Повышенная продукция тиреотропного гормона передней доли гипофиза вызывает увеличение синтеза тироксина и трийодтиронина щитовидной железы. Эти гормоны регулируют белковый обмен. На обмен белков оказывает прямое влияние и соматотропный гормон гипофиза.

Регуляторная роль гипоталамуса в жировом обмене связана с функцией серого бугра. Влияние гипоталамуса на обмен жиров опосре­довано изменением гормональной функции гипофиза, щитовидной и половых желез. Недостаточность гормональной функции желез приводит к ожирению. Более сложные расстройства жирового обмена наблюдаются при изменении функций поджелудочной железы. В этом случае они бывают связаны с нарушениями углевод­ного обмена. Истощение запасов гликогена при инсулиновой недо­статочности приводит к компенсаторному усилению процессов глюконеогенеза. Вследствие этого в крови увеличивается содержание кетоновых тел (бета - оксимасляной, ацетоуксусной кислот и аце­тона). Нарушение фосфолипидного обмена приводит к жировой ин­фильтрации печени. Лецитины и кефалины при этом легко отдают жирные кислоты, идущие на синтез холестерина, что в последующем обусловливает изменения, связанные с гиперхолестеринемией.

На углеводный обмен гипоталамус воздействует через симпатичес­кую нервную систему. Симпатические влияния усиливают функ­цию мозгового слоя надпочечников, выделяющего адреналин. Адреналин стимулирует мобилизацию гликогена из печени и мышц. Главными гумо­ральными факторами регуляции углеводного обмена являются гор­моны коры надпочечников и поджелудочной железы (глюкокортикоиды, инсулин и глюкагон). Глюкокортикиоды (кортизон, гидро­кортизон) оказывают ингибирующее (тормозящее) воздействие на глюкокиназную реакцию печени и снижают уровень глюкозы в крови. Инсулин способствует утилизации сахара клетками, а глюкагон уси­ливает мобилизацию гликогена, его расщепление и увеличение со­держания глюкозы в крови.

В гипоталамусе расположены нервные центры, регулирующие вод­но-солевой обмен. Здесь же находятся и осморецепторы. Их раздражение рефлекторно влияет на водно-солевой обмен, обеспечивая постоянство внутренней среды организма. Большую роль в регуля­ции водно-солевого обмена играют антидиуретический гормон гипо­физа и гормоны коры надпочечников (минералкортикоиды). Гормон гипофиза стимулирует обратное всасывание воды в почках и умень­шает этим мочеобразование. Минералкортикоиды (альдостерон) действуют на эпителий почечных канальцев и повышают обратное всасывание в кровь натрия. Регулирующее воздействие на обмен воды и солей оказывают также гормоны щитовидной и паращитовидных желез. Гомоны щитовидной железы увеличивает мочеобразование, гормоны паращитовидных желез способ­ствует выведению из организма солей кальция и фосфора.

Энергетический обмен в организме регулируется нервной и эндок­ринной системами. Уровень энергообмена даже в состоянии относи­тельного покоя может изменяться под влиянием условно рефлекторных раздражителей. Существенно влияют на уровень энергообмена гормоны гипофиза и щитовидной желе­зы. При усилении функции этих желез величина энергообмена повышается, при ослаблении - понижается.

Теплообмен

5.7.1 Температура тела человека. Изотермия

Способность организма человека сохранять постоянную темпера­туру обусловлена сложными биологическими и физико-химически­ми процессами терморегуляции. В отличие от холоднокровных (пойкилотермных) животных, температура тела теплокровных (гомойотермных) животных при колебаниях температуры внешней среды поддерживается на определенном уровне, наиболее выгодном для жизнедеятельности организма. Поддержание теплового баланса осуществляется благодаря строгому балансу между образованием теп­ла и его отдачей.

Величина теплообразования зависит от интенсивности химических реакций, характеризующих уровень обмена веществ. Теплоотдача регулируется преимущественно физическими процессами (теплоизлучение, теплопроведение, испарение).

Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания темпе­ратуры внешней среды. Это постоянство температуры тела носит на­звание изотермии. Изотермия в процессе онтогенеза развивается постепенно. У новорожденных детей она несовершенна и ус­тойчивый характер приобретаете возрастом. Перераспределение теп­ла между тканями осуществляется через кровь. Кровь обладает высокой теплоемкостью и переносит тепло от тканей с высоким уровнем теплообразования к тканям, где тепла образуется мало. В результате выравнивается уровень температуры в различ­ных частях тела и их областях.

Температура поверхностных тканей обычно ниже температуры глубоких тканей. Температура поверх­ности тела неравномерна. Она зависит от интенсивности переноса к ней тепла кровью из глубоких частей тела, а также от охлаждающего или согревающего действия температуры внешней среды. Так, температура кожи на покрытых одеждой участках колеблется от 29° до 34°. Колебания температуры кожи на открытых частях тела в основном зависят от температуры внешней среды.

Температура глубоких тканей более равномерна и составляет 37-37,5°. Темпе­ратура печени, мозга, почек несколько выше, чем других внутренних органов.

О температуре тела человека судят обычно по ее измерениям в под­мышечной впадине. Здесь температура у здорового человека равна 36,5-37°. Темпе­ратура тела ниже 24° и выше 43° не совмес­тима с жизнью человека. Изотермия име­ет большое значение для обменных процессов. Ферменты и гормоны облада­ют наибольшей активностью при темпе­ратуре 35-40°. Температура тела человека не остается постоянной, а колеблется в те­чение суток в пределах 0,5-0,8°. Макси­мальная температура тела наблюдается в 16-19 часов, а минимальная - в 3-4 часа.

Постоянство температуры тела у человека может сохраняться лишь при условии равенства теплообразования и теплопотери всего организма. Это достигается за счет физиологических механиз­мов терморегуляции. Выделяют химическую и физическую терморегуляцию. Способность человека противостоять воздействию тепла и холода, сохраняя стабильную температуру тела, имеет определенные пределы. При чрезмерно низкой или высокой температу­ре внешней среды защитные терморегуляционные механизмы оказываются недостаточными, и температура тела начинает резко падать или по­вышаться. В первом случае развивается состояние гипотермии, во втором - гипертермии.

5.7.2 Механизмы теплообразования

Образование тепла в организме происходит в результате химических реакций обмена веществ. При окислении пи­тательных веществ и других реакций тканевого метаболизма обра­зуется тепло. Величина теплообразования тесно связана с уровнем метаболической активности организма. Поэтому теплопро­дукцию называют также химической терморегуляцией.

Химическая терморегуляция имеет особо большое значение в поддержания постоянства температуры тела в условиях охлаждения. При понижении температуры окружающей среды уве­личивается интенсивность обмена веществ и, следовательно, теплооб­разование. У человека усиление теплообразования отмечается в том случае, когда температура окружающей среды становится ниже температуры комфорта. В обычной легкой одежде она равна 18-20°, а для обнаженного чело­века-28°С.

Суммарное теплообразование в организме происходит входе хи­мических реакций обмена веществ (окисление, гликолиз), что со­ставляет так называемое первичное тепло и при расходовании энергии макроэргических соединений (АТФ) на выполнение работы (вторичное тепло). В виде первичного тепла в тканях рассеивается 60-70% энергии. Остальные 30-40% после расщепле­ния АТФ обеспечивают работу мышц, различные процессы синте­за, секреции и др. Но и при этом та или иная часть энергии перехо­дит затем в тепло. Таким образом, и вторичное тепло образуется вследствие экзотермических химических реакций, а при сокраще­нии мышечных волокон - в результате их трения. В конечном итоге переходит в тепло или вся энергия, или подавляющая ее часть.

Наиболее интенсивное теплообразование в организме происходит в мышцах при их сокращении. Относительно небольшая двигательная активность увеличивает теплообразование в 2 раза, а тяжелая работа - в 4-5 раз и более. Однако в этих условиях существенно воз­растают потери тепла с поверхности тела.

При продолжительном охлаждении организма возникают непро­извольные периодические сокращения скелетной мускулатуры (холо­довая дрожь). При этом почти вся метаболическая энергия в мышце освобождается в виде тепла. Активация в условиях холода симпати­ческой нервной системы стимулирует липолиз в жировой ткани. В кровоток выделяются и в последующем окисляются с образованием большого количества тепла свободные жирные кислоты. Наконец, повышение теплопродукции связано с усилением функций надпочеч­ников и щитовидной железы. Гормоны этих желез, усиливая обмен веществ, вызывает повышенное теплообразование. Следует также иметь в виду, что все физиологические механизмы, которые регули­руют окислительные процессы, влияют в то же время и на уровень теплообразования.

5.7.3 Механизмы теплоотдачи

Отдача тепла организмом (физическая терморегуляция) осуще­ствляется путем излучения, проведения и испарения. С излучением отдается примерно 50-55% тепла в окружающую среду - путем лучеиспускания (за счет инфракрасной части спектра). Количество тепла, которое рассеивается организмом в окружающей среде с излучени­ем, пропорционально площади поверхности частей тела, со­прикасающихся с воздухом, и разности средних значений температур кожи и окружающей среды. Отдача тепла излучением прекращается, если выравнивается температура поверхности кожи и окружающей среды.

Теплопроведение может происходить путем кондукции и конвекции. Кондукцией тепло теряется при непосредственном контакте участков тела человека с другими физическими средами (например, человек держит в руке ложку, и она нагревается). При этом количество теряемого тепла пропорционально разнице средних температур контактирующих поверхностей и времени теп­лового контакта. Конвекция это способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха. Конвекцией тепло рассеивается при обтекании поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. Движение воздушных потоков (ветер, вентиляция) увеличи­вают количество отдаваемого тепла. Путем теплопроведения орга­низм теряет 15-20% тепла. При этом конвекция представляет более мощный механизм теплоотдачи, чем кондукция.

Теплоотдача путем испарения - это способ рассеивания организмом тепла (около 30%) в окружающую среду за счет его зат­раты на испарение пота или влаги с поверхности кожи и слизистых дыхательных путей. При температуре внешней среды 20° испарение влаги у человека составляет 600-800 г в сутки. При переходе в воздух 1 г воды организм теряет 0,58 ккал тепла. Если внешняя температура выше среднего значение температуры кожи, то организм не отда­ет во внешнюю среду теплоизлучением и проведением, а наоборот, поглощает тепло извне. Испарение жидкости с поверхности тела происходит при влажности воздуха менее 100%.

5.7.4 Регуляция теплового обмена

Регуляция теплообмена обеспечивает баланс между количеством продуцируемого в единицу времени тепла и количеством тепла, рас­сеиваемого организмом за то же время в окружающую среду. В ре­зультате температура тела человека поддерживается на относительно постоянном уровне.

Восприятие и анализ температуры окружающей среды осуществляется с помощью терморецепторов. Терморецепторы находятся в коже, мышцах, сосудах, во внутренних органах, дыхательных пу­тях, спинном и среднем мозге. Одни из них реагируют на холод (холодовые рецепторы), которых на поверхности тела человека насчитыва­ется около 250000, другие - на тепло (тепловые рецепторы), их при­мерно 30000. Разветвленная сеть терморецепторов обеспечивает под­робную информацию о температурных изменениях во внешней и внутренней среде организма. Данная информация поступает в высшие центры теплообмена.

Центральный аппарат терморегуляции находится в передней и задней части гипоталамуса, а также в ретикулярной формации сред­него мозга. Центр терморегуляции содержит различные по функци­ям группы нервных клеток. Термочувствительные нейроны пере­днего гипоталамуса поддерживают базальный уровень («установоч­ную точку») температуры тела в организме человека. Эффекторные нейроны заднего гипоталамуса и среднего мозга управляют процесса­ми теплопродукции и теплоотдачи.

Важная роль в терморегуляции принадлежит высшим отделам ЦНС - коре и ближайшим подкорковым центрам. Эмоциональное возбуждение, изменения в психическом состоянии оказывают суще­ственное влияние на уровень теплообразования и теплоотдачи. От­четливые изменения температуры тела наблюдаются у спортсменов при стартовом возбуждении (предстартовая лихорадка). При дли­тельной мышечной работе температура тела может повышаться до 39-40° и более.

В осуществлении гуморальной регуляции теплообмена участвуют железы внутренней секреции, главным образом щитовидная железа и над­почечники. Участие щитовидной железы в терморегуляции обуслов­лено тем, что влияние пониженной температуры приводит к усиленному выделению ее гормонов, повышающих обмен веществ, и, сле­довательно, теплообразование. Роль надпочечников связана с выде­лением ими в кровь катехоламинов, которые, усиливая окислительные процессы в тканях, в частности в мышцах, увеличи­вают теплопродукцию и суживают кожные сосуды, уменьшая тепло­отдачу.

Оглавление темы "Регуляция обмена веществ и энергии. Рациональное питание. Основной обмен. Температура тела и ее регуляция.":
1. Энергетические затраты организма в условиях физической нагрузки. Коэффициент физической активности. Рабочая прибавка.

3. Концентрация глюкозы в крови. Схема регуляции концентрации глюкозы. Гипогликемия. Гипогликемическая кома. Чувство голода.
4. Питание. Норма питания. Соотношение белков, жиров и углеводов. Энергетической ценность. Калорийность.
5. Рацион беременных и кормящих женщин. Рацион детского питания. Распределение суточного рациона. Пищевые волокна.
6. Рациональное питание как фактор сохранения и укрепления здоровья. Здоровый образ жизни. Режим приема пищи.
7. Температура тела и ее регуляция. Гомойотермные. Пойкилотермные. Изотермия. Гетеротермные организмы.
8. Нормальная температура тела. Гомойотермное ядро. Пойкилотермная оболочка. Температура комфорта. Температура тела человека.
9. Теплопродукция. Первичная теплота. Эндогенная терморегуляция. Вторичная теплота. Сократительный термогенез. Несократительный термогенез.
10. Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение.

В данной главе представлены общие вопросы нейрогуморальной регуляции обмена веществ и энергии в организме и, главным образом, регуляция метаболизма. Конечной целью регуляции обмена веществ и энергии является обеспечение потребностей организма, его органов, тканей и отдельных клеток в энергии и в разнообразных веществах в соответствии с уровнем функциональной активности. В целостном организме постоянно существует необходимость согласования общих метаболических потребностей с потребностями клетки органа, ткани. Такое согласование достигается посредством распределения между органами и тканями веществ, поступающих из окружающей среды и синтезированных внутри организма.

Обмен веществ , протекающий внутри организма, не связан непосредственно с окружающей средой. Питательные вещества, прежде чем они смогут вступить в обменные процессы, должны быть получены из пищи в желудочно-кишечном тракте в молекулярной форме. Кислород, необходимый для биологического окисления, должен быть получен из воздуха в легких, доставлен в кровь, связан с гемоглобином и перенесен кровью к тканям. Скелетные мышцы, являясь в организме одним из мощных потребителей энергии, также обслуживают обмен веществ и энергии, обеспечивая поиск, прием и обработку пищи. Непосредственное отношение к обмену веществ и энергии имеет выделительная система. Таким образом, регуляция обмена веществ и энергии является мультипараметрической, включающей в себя регулирующие системы множества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

Роль центра в регуляции обмена веществ и энергии играют ядра гипоталамуса. Они имеют непосредственное отношение к генерации чувства голода и насыщения, теплообмену, осморегуляции. В гипоталамусе имеются полисенсорные нейроны, реагирующие на изменения концентрации глюкозы, водородных ионов, температуры тела, осмотического давления, т. е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды и формируются управляющие сигналы, которые посредством эфферентных систем приспосабливают ход метаболизма к потребностям организма.

В качестве звеньев эфферентной системы регуляции обмена используются симпатический и парасимпатический отделы вегетативной нервной системы. Вьщеляющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными посредниками влияние на функцию и метаболизм тканей. Под управляющим влиянием гипоталамуса находится и используется в качестве эфферентной системы регуляции обмена веществ и энергии - эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размножение, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жирные кислоты, минеральные вещества.

Химическая энергия питательных веществ используется для ресинтеза АТФ, выполнения всех видов работы и процессы, протекающие внутри клетки. Поэтому важнейшим эффектором, через который оказывается регулирующее воздействие на обмен веществ и энергии, являются клетки органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Наиболее частыми эффектами регуляторных воздействий на клетку являются изменения каталитической активности ферментов и их концентрации, сродства фермента и субстрата, свойств микросреды, в которой функционируют ферменты. Регуляция активности ферментов может осуществляться различными способами. «Тонкая настройка» каталитической активности ферментов достигается посредством влияния веществ - модуляторов , которыми нередко являются сами метаболиты.

Метаболизм клетки в целом невозможен без интеграции многих биохимических превращений. Эта интеграция обеспечивается, главным образом, с помощью аденилатов, участвующих в регуляции любых метаболических превращений клетки.

Интеграция обмена белков , жиров и углеводов клетки осуществляется посредством общих для них источников энергии. При биосинтезе любых простых и сложных органических соединений, макромолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД Н, НАДФ Н, поставляющих энергию для восстановления окисленных соединений других веществ. За общий энергетический запас клетки, полученный в ходе катаболизма, конкурируют все анаболические процессы, протекающие с затратой энергии. Так, например, при осуществлении печенью синтеза глюкозы из лактата и аминокислот (глюконеогенез) она не может одновременно синтезировать жиры и белки. Глюконеогенез сопровождается расщеплением в печени белков и жиров и окислением образующихся при этом жирных кислот, что ведет к освобождению энергии, необходимой для синтеза АТФ и НАД- Н, необходимых для глюконеоге-неза.

Еще одним проявлением интеграции метаболических превращений белков , жиров и углеводов в клетке является существование общих предшественников и общих промежуточных продуктов обмена веществ. Общим промежуточным продуктом обмена является ацетил-КоА. Важнейшими конечными путями превращений веществ в клетке являются цикл лимонной кислоты и реакции дыхательной цепи, протекающие в митохондриях. Цикл лимонной кислоты - главный источник С02 для последующих реакций глюконеогенеза, синтеза жирных кислот и мочевины.

Одним из механизмов согласования общих метаболических потребностей организма с потребностями клетки являются нервные и гормональные влияния на ключевые ферменты. Характерными особенностями этих ферментов являются: положение в начале того метаболического пути, к которому принадлежит фермент; приближенность расположения или ассоциированность со своим субстратом; реагирование не только на действие внутриклеточных регуляторов метаболизма, но и на внеклеточные нервные и гормональные воздействия.

Примерами ключевых ферментов являются гликогенфосфорилаза, фосфофруктокиназа, липаза. Их роль в процессах регуляции метаболизма видна, в частности, при подготовке организма к «борьбе или бегству». При повышении в этих условиях в крови уровня адреналина до 10-9 М он связывается с адренорецепторами плазматической мембраны, активирует аде-нилатциклазу, которая катализирует превращение АТФ в циклический АМФ. Последний активирует гликогенфосфорилазу, многократно усиливающую расщепление гликогена в печени.

Процесс гликогенолиза в мышцах может одновременно активироваться нервной системой и катехоламинами. Этот эффект достигается с участием ионов Са2+, который связывается с кальмодулином, являющимся субъединицей фосфорилазы. Она при этом активируется и приводит к мобилизации гликогена. Нервный механизм мобилизации гликогена осуществляется через меньшее число промежуточных этапов, чем гормональный. Этим достигается его быстродействие.

Удовлетворение энергетических потребностей организма посредством ускорения внутриклеточных процессов расщепления триглицеридов в жировой клетчатке достигается активацией гормончувствительной липазы. Повышение активности этого фермента (адреналином, норадреналином, глюкагоном) приводит к мобилизации свободных жирных кислот, являющихся основным энергетическим субстратом окисления в мышцах при выполнении ими интенсивной и длительной работы.

Переход органов и тканей с одного уровня функциональной активности на другой всегда сопровождается соответствующими изменениями их трофики (питания ). Например, при рефлекторном сокращении скелетных мышц нервная система осуществляет не только пусковое действие, но и трофическое влияние путем усиления в них местного кровотока и интенсивности обмена веществ. Увеличение силы сокращений миокарда под влиянием симпатической нервной системы обеспечивается одновременным усилением коронарного кровотока и метаболизма в мышце сердца. О влиянии нервной системы на трофику скелетных мышц свидетельствует тот факт, что денервация мышцы приводит к постепенной атрофии мышечных волокон. Важнейшее значение в осуществлении трофической функции нервной системы играет ее симпатический отдел. Через симпато-адреналовую систему достигается не только активация обмена веществ и энергии в клетке.

Норадреналин и адреналин , выброс которых в кровоток возрастает при возбуждении симпатической нервной системы, вызывают увеличение глубины дыхания, расширяют мускулатуру бронхов, что способствует доставке кислорода в кровь. Адреналин, оказывая положительное инотропное и хронотропное действие на сердце, увеличивает минутный объем крови, повышает систолическое артериальное давление. В результате активации дыхания и кровообращения возрастает доставка кислорода к тканям.

Нервная система регулирует обменные, энергетические и тепловые процессы в организме. Впервые это было показано в опытах Клода Бернара и И. П. Павлова. В середине прошлого века Клод Бернар, произведя укол иглой в дно IV желудочка продолговатого мозга кролика, обнаружил резкое повышение уровня сахара в крови и появление его в моче. Этот опыт получил название "сахарный укол". Впоследствии было показано, что "сахарный укол" нарушает не только углеводный, но и другие виды обмена. Под влиянием этого вмешательства у животных понижается температура печени, мышц, кишечника, повышается интенсивность белкового обмена, что сопровождается увеличенным выделением азота с мочой.

И. П. Павлов в опытах на животных показал, что при раздражении усиливающего нерва происходит повышение работоспособности сердца. Он высказал предположение о том, что это связано с трофическим влиянием нервной системы на обмен веществ в сердечной мышце. В настоящее время эти данные подтверждены экспериментально. В частности, установлено, что при раздражении усиливающего нерва в сердечной мышце увеличивается количество сократительных белков и повышается обмен АТФ. Было также показано, что раздражение симпатических нервов стимулирует распад гликогена в печени, а парасимпатических - его образование.

В дальнейшем была установлена возможность условнорефлекторных изменений уровня обмена веществ. Если многократно сочетать прием человеком сахара с одновременным включением метронома, то через некоторое время изолированное применение условного сигнала приводит к повышению содержания сахара в крови. Условнорефлекторный механизм изменения обмена веществ и энергии наблюдается у человека в предстартовых и предрабочих состояниях. У спортсменов до начала соревнования, а у рабочего перед работой отмечается повышение обмена веществ, температуры тела, увеличивается потребление кислорода и выделение углекислого газа. Можно вызвать условнорефлекторные изменения обмена веществ, энергетических и тепловых процессов у людей и на словесный раздражитель.

Влияние нервной системы на обменные и энергетические процессы в организме опосредуется несколькими путями:

1) непосредственное влияние нервной системы (через гипоталамус, эфферентные нервы) на ткани и органы;

2) опосредованное влияние нервной системы через гипофиз и его соматотропный гормон;

3) опосредованное влияние нервной системы через тропные гормоны гипофиза и периферические железы внутренней секреции;



4) прямое влияние нервной системы (гипоталамус) на активность желез внутренней секреции и через них на обменные процессы в тканях и органах.

Основным отделом центральной нервной системы, который регулирует все виды обменных и энергетических процессов, является гипоталамус. В гипоталамусе обнаружены группы ядер, которые регулируют обмен углеводов, жиров, белков, воды и солей, а также обмен тепла и потребление пищи.

Как уже указывалось, выраженное влияние на обменные процессы и теплообразование оказывают железы внутренней секреции. Так, гормоны щитовидной железы в определенных дозах, соматотропный гормон гипофиза, инсулин, половые гормоны (андрогены) усиливают синтетические процессы в организме, особенно в отношении белка (анаболическое действие гормонов). Гормоны коры надпочечников и щитовидной железы в больших количествах усиливают катаболизм, т. е. распад белков.

В организме ярко проявляется тесное взаимосвязанное влияние нервной и эндокринной систем на обменные и энергетические процессы. Так, возбуждение симпатической нервной системы не только оказывает прямое стимулирующее действие на обменные процессы, но при этом увеличивается также выход гормонов щитовидной железы и надпочечников (тироксин и адреналин) в кровь. За счет этого дополнительно усиливается обмен веществ и энергии. Кроме того, эти гормоны сами повышают тонус симпатического отдела нервной системы. Значительные изменения в метаболизме и теплообмене происходят при недостатке в организме гормонов желез внутренней секреции. Так, недостаток тироксина приводит к снижению основного обмена. Это связано с уменьшением потребления кислорода тканями и ослаблением теплообразования. В результате снижается температура тела.

Гормоны желез внутренней секреции участвуют в регуляции обмена веществ и энергии, изменяя проницаемость клеточных мембран (инсулин), активируя ферментные системы организма (адреналин, глюкагон и др.) и влияя на их биосинтез (глюкокортикоиды).



Таким образом, регуляция обмена веществ и энергии осуществляется нервной и эндокринной системами, которые обеспечивают приспособление организма к меняющимся условиям его обитания.

Контрольные вопросы

1. Что называют теплообменом?

2. Каких животных называют пойкилотермными и гомойотермными?

3. За счет каких процессов образуется тепло в организме?

4. Каковы нормальные колебания температуры тела человека?

5. Что такое химическая терморегуляция? Каковы ее механизмы?

6. Что такое физическая терморегуляция? Каковы ее механизмы?

7. Что такое гипертермия? Что такое гипотермия?

8. Как меняется терморегуляция при физической нагрузке?

9. Как меняется терморегуляция при изменении температуры внешней среды?

10. Где расположены терморецепторы?

11. Где находятся центры терморегуляции?

12. Как осуществляется нервная регуляция теплообмена?

13. Как в организме осуществляется регуляция обмена веществ и энергии?

1. На сколько градусов нагреется тело человека (масса 70 кг), если

лишить его на 1 ч теплоотдачи?

2. Какое количество тепла отдает кожа человека при испарении 0,5 л пота?

ОБМЕН УГЛЕВОДОВ.

Биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией.Энергетическая ценность 1 г углеводов составляет 16,7 кДж (4,0 ккал). Углеводы являются непосредственным источником энергии для всех клеток организма, выполняют пластическую и опорную функции.

Суточная потребность взрослого человека в углеводах составляет около0,5 кг. Основная часть их (около 70%) окисляется в тканях до воды и углекислого газа. Около 25-28% пищевой глюкозы превращается в жир и только 2-5% ее синтезируется в гликоген - резервный углевод организма.

Единственной формой углеводов, которая может всасываться, являются моносахара. Они всасываются главным образом в тонком кишечнике, током крови переносятся в печень и к тканям. В печени из глюкозы синтезируется гликоген. Этот процесс носит название гликогенеза. Гликоген может распадаться до глюкозы. Это явление называют гликогенолизом. В печени возможно новообразование углеводов из продуктов их распада (пировиноградной или молочной кислоты), а также из продуктов распада жиров и белков (кетокислот), что обозначается какгликонеогенез. Гликогенез, гликогенолиз и гликонеогенез - тесно взаимосвязанные и протекающие в печени процессы, обеспечивающие оптимальный уровень сахара крови.

В мышцах, так же как и в печени, синтезируется гликоген. Распад гликогена является одним из источников энергии мышечного сокращения. При распаде мышечного гликоген? процесс идет до образования пировиноградной и молочной кислот. Этот процесс называютгликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ре-синтез гликогена.

Головной мозг содержит небольшие запасы углеводов и нуждается в постоянном поступлении глюкозы. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга покрываются исключительно за счет углеводов. Снижение поступления в мозг глюкозы сопровождается изменением обменных процессов в нервной ткани и нарушением функций мозга.



Образование углеводов из белков и жиров (гликонеогенез). В результате превращения аминокислот образуется пировиноградная кислота, при окислении жирных кислот - ацетилкоэнзим А, который может превращаться в пировиноградную кислоту - предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии - углеводами и жирами - существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. В кровь меньше поступает свободных жирных кислот. Если возникает гипогликемия, то процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты.

ВОДНО-СОЛЕВОЙ ОБМЕН.

Все химические и физико-химические процессы, протекающие в организме, осуществляются в водной среде. Вода выполняет в организме следующие важнейшие функции: 1) служит растворителем продуктов питания и обмена; 2) переносит растворенные в ней вещества; 3) ослабляет трение между соприкасающимися поверхностями в теле человека; 4) участвует в регуляции температуры тела за счет большой теплопроводности, большой теплоты испарения.

Принято делить воду на внутриклеточную, интрацеллюлярную (72%) и внеклеточную, экстрацеллюлярную (28%). Внеклеточная вода размещена внутри сосудистого русла (в составе крови, лимфы, цереброспинальной жидкости) и в межклеточном пространств Вода поступает в организм через пищеварительный тракт в виде жидкости или воды, содержащейся в плотных пищевых продуктах. Некоторая часть воды образуется в самом организме в процессе обмена веществ.

При избытке в организме воды наблюдается общая гипергидратация (водное отравление), при недостатке воды нарушается метаболизм. Потеря 10% воды приводит к состоянию дегидратации (обезвоживание), при потере 20% воды наступает смерть. Вместе с водой в организм поступают и минеральные вещества (соли). Около 4% сухой массы пищи должны составлять минеральные соединения.

Важной функцией электролитов является участие их в ферментативных реакциях.

Натрий обеспечивает постоянство осмотического давления внеклеточной жидкости, участвует в создании биоэлектрического мембранного потенциала, в регуляции кислотно- основного состояния.

Калий обеспечивает осмотическое давление внутриклеточной жидкости, стимулирует образование ацетилхолина. Недостаток ионов калия тормозит анаболические процессы в организме.

Хлор является также важнейшим анионом внеклеточной жидкости, обеспечивая постоянство осмотического давления.

Кальций и фосфор находятся в основном в костной ткани (свыше 90%). Содержание кальция в плазме и крови является одной из биологических констант, так как даже незначительные сдвиги в уровне этого иона могут приводить к тяжелейшим последствиям для организма. Снижение уровня кальция в крови вызывает непроизвольные сокращения мышц, судороги, и вследствие остановки дыхания наступает смерть. Повышение содержания кальция в крови сопровождается уменьшением возбудимости нервной и мышечной тканей, появлением парезов, параличей, образованием почечных камней. Кальций необходим для построения костей, поэтому он должен поступать в достаточном количестве в организм с пищей.

Фосфор участвует в обмене многих веществ, так как входит в состав макроэргических соединений (например, АТФ). Большое значение имеет отложение фосфора в костях.

Железо входит в состав гемоглобина, миоглобина, ответственных за тканевое дыхание, а также в состав ферментов, участвующих в окислительно-восстановительных реакциях. Недостаточное поступление в организм железа нарушает синтез гемоглобина. Уменьшение синтеза гемоглобина ведет к анемии (малокровию). Суточная потребность в железе взрослого человека составляет 10-30 мкг.

Иод в организме содержится в небольшом количестве. Однако его значение велико. Это связано с тем, что йод входит в состав гормонов щитовидной железы, оказывающих выраженное влияние на все обменные процессы, рост и развитие организма.

Витамины

Витамины (от лат. «вита» - жизнь) - биологически активные вещества, необходимые для жизнедеятельности организма. Они способствуют нормальному протеканию всех жизненных процессов. Витамины были открыты русским врачом Н. И. Луниным (1853- 1937). Витамины способствуют укреплению здоровья, увеличивают сопротивляемость организма к простудным и инфекционным заболеваниям, повышают работоспособность. При недостатке того или иного витамина - гиповитаминозе - или при отсутствии витаминов - авитаминозе - наступают глубокие нарушения в процессах обмена веществ, ведущие к тяжелым заболеваниям, вплоть до гибели организма. Организм человека не способен синтезировать витамины и должен ежедневно получать их с пищей, прежде всего с растительной.

Обозначаются витамины заглавными буквами латинского алфавита: А, В, С, D, Е, К, РР, Н. Некоторые буквы, например В, охватывают целые группы: от В1 до В15.

Витамин А

Важнейший из витаминов - витамин А. Его называют витамином роста, он участвует в окислительно-восстановительных реакциях обмена. При нехватке витамина А в организме наблюдается сухость кожи, сухость роговицы глаз и ее помутнение. С недостатком витамина А связано нарушение сумеречного зрения («куриная слепота»). Наиболее богаты витамином А печень, сливочное масло, молоко, морковь, абрикосы и др.

Витамин С

Витамин С, или аскорбиновая кислота, синтезируется в растениях и накапливается в шиповнике, лимоне, черной смородине, зеленом луке, плодах клюквы и т. д. В настоящее время разработан промышленный синтез витамина С. При его недостатке развивается цинга. Особенно чувствуется нехватка витамина С к весне (у человека появляются сонливость, усталость, апатия).

Витамин D

Витамин D играет важную роль в обмене кальция, фосфора и в целом - в процессе образования костей. При отсутствии витамина D соли кальция и фосфора не откладываются н костях, а выводятся из организма и поэтому кости, особенно у детей, размягчаются. Под тяжестью тела ноги искривляются, на ребрах образуются утолщения

Четки, задерживается развитие зубов. Наиболее богаты витамином D печень рыб, сливочное масло, икра, желток яиц. Растения содержат вещество, близкое к витамину D,

Эргостерин, который под влиянием солнечных и ультрафиолетовых лучей переходит в витамин D.

Витамины группы В

Витамины группы В (В1 В2 В6 В12 и др.) регулируют многие ферментативные реакции обмена веществ, особенно обмена белков, аминокислот, нуклеиновых кислот. При их недостатке нарушаются функции нервной системы (болезнь бери-бери), желудочно- кишечного тракта (поносы), кроветворных органов (малокровие) и др. Эти витамины содержатся в печени млекопитающих и некоторых рыб, в почках, петрушке и др.

Витамин РР

Витамин РР необходим для нормальной нервно-психической деятельности.

Образование и расход энергии.

Энергия, освобождающаяся при распаде органических веществ, накапливается в форме АТФ, количество которой в тканях организма поддерживается на высоком уровне. АТФ содержится в каждой клетке организма. Наибольшее количество ее обнаруживается в скелетных мышцах - 0,2-0,5%. Любая деятельность клетки всегда точно совпадает по времени с распадом АТФ.

Разрушившиеся молекулы АТФ должны восстановиться. Это происходит за счет энергии, которая освобождается при распаде углеводов и других веществ.

О количестве затраченной организмом энергии можно судить по количеству тепла, которое он отдает во внешнюю среду. Основной обмен и его значение.

Основной обмен - минимальное количество энергии, необходимое для поддержания нормальной жизнедеятельности организма в состоянии полного покоя при исключении всех внутренних и внешних влияний, которые могли бы повысить уровень обменных процессов. Основной обмен веществ определяют утром натощак (через 12-14 ч после последнего приема пищи), в положении лежа на спине, при полном расслаблении мышц, в условиях температурного комфорта (18-20° С). Выражается основной обмен количеством энергии, выделенной организмом (кДж/сут).

В состоянии полного физического и психического покоя организм расходует энергию на: 1) постоянно совершающиеся химические процессы; 2) механическую работу, выполняемую отдельными органами (сердце, дыхательные мышцы, кровеносные сосуды, кишечник и др.); 3) постоянную деятельность железисто-секреторного аппарата.

Основной обмен веществ зависит от возраста, роста, массы тела, пола. Самый интенсивный основной обмен веществ в расчете на 1 кг массы тела отмечается у детей. С увеличением массы тела усиливается основной обмен веществ.

Средняя величина основного обмена веществ у здорового человека равна приблизительно 4,2 кДж (1 ккал) в 1 ч на 1 кг массы тела.

По расходу энергии в состоянии покоя ткани организма неоднородны. Более активно расходуют энергию внутренние органы, менее активно - мышечная ткань. Интенсивность основного обмена веществ в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Худые люди производят больше тепла на 1 кг массы тела, чем полные.

У женщин основной обмен веществ ниже, чем у мужчин. Это связано с тем, что у женщин меньше масса и поверхность тела. Согласно правилу Рубнера основной обмен веществ приблизительно пропорционален поверхности тела.

Отмечены сезонные колебания величины основного обмена веществ - повышение его весной и снижение зимой. Мышечная деятельность вызывает повышение обмена веществ пропорционально тяжести выполняемой работы.

К значительным изменениям основного обмена приводят нарушения функций органов и систем организма. При повышенной функции щитовидной железы, малярии, брюшном тифе, туберкулезе, сопровождающихся лихорадкой, основной обмен веществ усиливается. Расход энергии при физической нагрузке.

При мышечной работе значительно увеличиваются энергетические затраты организма. Это увеличение энергетических затрат составляет рабочую прибавку, которая тем больше, чем интенсивнее работа.

По сравнению со сном при медленной ходьбе расход энергии увеличивается в 3 раза, а при беге на короткие дистанции во время соревнований - более чем в 40 раз. При кратковременных нагрузках энергия расходуется за счет окисления углеводов. При длительных мышечных нагрузках в организме расщепляются преимущественно жиры (80% всей необходимой энергии). У тренированных спортсменов энергия мышечных сокращений обеспечивается исключительно за счет окисления жиров. У человека, занимающегося физическим трудом, энергетические затраты возрастают пропорционально интенсивности труда.

Для людей, выполняющих легкую работу сидя, нужно 2400 - 2600 ккал в сутки, работающих с большей мышечной нагрузкой, требуется 3400 - 3600 ккал, выполняющих тяжелую мышечную работу - 4000-5000 ккал и выше. У тренированных спортсменов при кратковременных интенсивных упражнениях величина рабочего обмена может в 20 раз превосходить основной обмен. Потребление кислорода при физической нагрузке не отражает общего расхода энергии, так как часть ее тратится на гликолиз (анаэробный) и не требует затраты кислорода.

ПИТАНИЕ:

Восполнение энергетических затрат организма происходит за счет питательных веществ. В пище должны содержаться белки, углеводы, жиры, минеральные соли и витамины в небольших количествах и правильном соотношении. Усвояемость пищевых веществ зависит от индивидуальных особенностей и состояния организма, от количества и качества пищи, соотношения различных составных частей ее, способа приготовления. Растительные продукты усваиваются хуже, чем продукты животного происхождения, потому что в растительных продуктах содержится большее количество клетчатки. Белковый режим питания способствует осуществлению процессов всасывания и усвояемости пищевых веществ. При преобладании в пище углеводов усвоение белков и жиров снижается. Замена растительных продуктов продуктами животного происхождения усиливает обменные процессы в организме. Если вместо растительных давать белки мясных или молочных продуктов, а вместо ржаного хлеба - пшеничный, то усвояемость продуктов питания значительно повышается.

Таким образом, чтобы обеспечить правильное питание человека, необходимо учитывать степень усвоения продуктов организмом. Кроме того, пища должна обязательно содержать все незаменимые (обязательные) питательные вещества: белки и незаменимые аминокислоты, витамины, высоконепредельные жирные кислоты, минеральные вещества и воду.

Основную массу пищи (75-80%) составляют углеводы и жиры.

Пищевой рацион - количество и состав продуктов питания, необходимых человеку в сутки. Он должен восполнять суточные энергетические затраты организма и включать в достаточном количестве все питательные вещества.

Для составления пищевых рационов необходимо знать содержание белков, жиров и углеводов в продуктах и их энергетическую ценность. Имея эти данные, можно составить научно обоснованных пищевой рацион для людей разного возраста, пола и рода занятий.

Режим питания и его физиологическое значение.

Необходимо соблюдать определенный режим питания, правильно его организовать: постоянные часы приема пищи, соответствующие интервалы между ними, распределение суточного рациона в течение дня. Принимать пищу следует всегда в определенное время не реже 3 раз в сутки: завтрак, обед и ужин. Завтрак по энергетической ценности должен составлять около 30% от общего рациона, обед - 40-50%, а ужин - 20-25%. Рекомендуется ужинать за 3 ч до сна.

Правильное питание обеспечивает нормальное физическое развитие и психическую деятельность, повышает работоспособность, реактивность и устойчивость организма к влиянию окружающей среды.

Согласно учению И. П. Павлова об условных рефлексах, организм человека приспосабливается к определенному времени приема пищи: появляется аппетит и начинают выделяться пищеварительные соки. Правильные промежутки между приемами пищи обеспечивают чувство сытости в течение этого времени.

Трехкратный прием пищи в общем физиологичен. Однако предпочтительнее четырехразовое питание, при котором повышается усвоение пищевых веществ, в частности белков, не ощущается чувство голода в промежутках между отдельными приемами пищи и сохраняется хороший аппетит. В этом случае энергетическая ценность завтрака составляет 20%, обед - 35%, полдник-15%, ужин - 25%.

Рациональное питание. Питание считается рациональным, если полностью удовлетворяется потребность в пище в количественном и качественном отношении, возмещаются все энергетические затраты. Оно содействует правильному росту и развитию организма, увеличивает его сопротивляемость вредным воздействиям внешней среды, способствует развитию функциональных возможностей организма и повышает интенсивность труда. Рациональное питание предусматривает разработку пищевых рационов и режимов питания применительно к различным контингентам населения и условиям жизни.

Как уже указывалось, питание здорового человека строится на основании суточных пищевых рационов. Рацион и режим питания больного называются диетой. Каждая диета имеет определенные составные части пищевого рациона и характеризуется следующими признаками: 1) энергетической ценностью; 2) химическим составом; 3) физическими свойствами (объем, температура, консистенция); 4)режимом питания.

Принципы составления пищевых рационов

Питание должно точно соответствовать потребностям организма в пластических веществах и энергии, минеральных солях, витаминах и воде, обеспечивать нормальную жизнедеятельность, хорошее самочувствие, высокую работоспособность, сопротивляемость инфекциям, рост и развитие организма. При составлении пищевого рациона (т. е. количества и состава продуктов питания, необходимых человеку в сутки) следует соблюдать ряд принципов.

1. Калорийность пищевого рациона должна соответствовать энергетическим затратам организма, которые определяются видом трудовой деятельности.

2. Учитывается калорическая ценность питательных веществ, для этого используются специальные таблицы, в которых указано процентное содержание в продуктах белков, жиров и углеводов и калорийность 100 г продукта.

3. Используется закон изодинамии питательных веществ, т. е. взаимозаменяемость белков, жиров и углеводов, исходя из их энергетической ценности. Например, 1 г жира (9,3 ккал) можно заменить 2,3 г белка или углеводов. Однако такая замена возможна только на короткое время, так как питательные вещества выполняют не только энергетическую, но и пластическую функцию.

4. В пищевом рационе должно содержаться оптимальное для данной группы работников количество белков, жиров и углеводов, например, для работников 1-й группы в суточном рационе должно быть 80 -120 г белка, 80 -100 г жира, 400 - 600 г углеводов.

5. Соотношение в пищевом рационе количества белков, жиров и углеводов должно быть 1:1,2:4.

6. Пищевой рацион должен полностью удовлетворять потребность организма в витаминах, минеральных солях и воде, а также -одержать все незаменимые аминокислоты (полноценные белки).

7. Не менее одной трети суточной нормы белков и жиров должно поступать в организм в виде продуктов животного происхождения.

8. Необходимо учитывать правильное распределение калорийности рациона по отдельным приемам пищи. Первый завтрак должен содержать примерно 25-30% всего суточного рациона, второй завтрак - 10-15%, обед 40 - 45% и ужин - 15-20%.

Регуляция обмена веществ и энергии.

Условно-рефлекторные изменения обмена веществ и энергии наблюдаются у человека в предстартовых и предрабочих состояниях. У спортсменов до начала соревнования, а у рабочего перед работой отмечается повышение обмена веществ, температуры тела, увеличивается потребление кислорода и выделение углекислого газа. Можно вызвать условно-рефлекторные изменения обмена веществ, энергетических и тепловых процессов у людей на словесный раздражитель.

Влияние нервной системы на обменные и энергетические процессы в организме осуществляется несколькими путями:

Непосредственное влияние нервной системы (через гипоталамус, эфферентные нервы) на ткани и органы;

Опосредованное влияние нервной системы через гипофиз (соматотропин);

Опосредованное влияние нервной системы через тропные гормоны гипофиза и периферические железы внутренней секреции;

Прямое влияние нервной системы (гипоталамус) на активность желез внутренней секреции и через них на обменные процессы в тканях и органах.

Основным отделом центральной нервной системы, который регулирует все виды обменных и энергетических процессов, является гипоталамус. Выраженное влияние на обменные процессы и теплообразование оказывают железы внутренней секреции. Гормоны коры надпочечников и щитовидной железы в больших количествах усиливают катаболизм, т. е. распад белков.

В организме ярко проявляется тесное взаимосвязанное влияние нервной и эндокринной систем на обменные и энергетические процессы. Так, возбуждение симпатической нервной системы не только оказывает прямое стимулирующее влияние на обменные процессы, но при этом увеличивается секреция гормонов щитовидной железы и надпочечников (тироксин и адреналин). За счет этого дополнительно усиливается обмен веществ и энергии. Кроме того, эти гормоны сами повышают тонус симпатического отдела нервной системы. Значительные изменения в метаболизме и теплообмене происходят при дефиците в организме гормонов желез внутренней секреции. Например, недостаток тироксина приводит к снижению основного обмена. Это связано с уменьшением потребления кислорода тканями и ослаблением теплообразования. В результате снижается температура тела.

Гормоны желез внутренней секреции участвуют в регуляции обмена веществ и энергии, изменяя проницаемость клеточных мембран (инсулин), активируя ферментные системы организма (адреналин, глюкагон и др.) и влияя на их биосинтез (глюкокортикоиды). Таким образом, регуляция обмена веществ и энергии осуществляется нервной и эндокринной системами, которые обеспечивают приспособление организма к меняющимся условиям его обитания.



Публикации по теме