Солнечная энергия использование человеком. Как можно использовать солнечную энергию

Жизнь современного человека просто немыслима без энергии. Отключение электроэнергии представляется катастрофой, человек уже не мыслит жизнь без транспорта, а приготовление, к примеру, пищи на костре, а не на удобной газовой или электрической плите - это уже из разряда хобби.

До сих пор мы используем для выработки энергии органическое топливо (нефть, газ, уголь). Но их запасы на нашей планете ограничены, и не сегодня-завтра наступит день, когда они иссякнут. Что же делать? Ответ уже есть - искать другие источники энергии, нетрадиционные, альтернативные, запас которых просто неисчерпаем.

К таким альтернативным источникам энергии относятся солнце и ветер.

Использование солнечной энергии

Солнце - мощнейший поставщик энергии. Что-то мы используем в силу наших физиологических особенностей. Но миллионы, миллиарды киловатт уходят впустую и исчезают с наступлением темноты. Каждую секунду Солнце дарит Земле 80 тысяч миллиардов киловатт. Это в несколько раз больше, чем вырабатывают все электростанции мира.

Только представьте, какие выгоды принесет человечеству использование солнечной энергии:

. Бесконечность по времени . Ученые предсказывают, что Солнце не погаснет еще в течение нескольких миллиардов лет. А это значит, что хватит и на наш век и для наших дальних потомков.

. География . На нашей планете нет мест, где не светило бы солнце. Где-то ярче, где-то тусклее, но Солнце есть везде. А значит не нужно будет окутывать Землю бесконечной паутиной проводов, пытаясь доставить электроэнергию в отдаленные уголки планеты.

. Количество . Энергии солнца хватит на всех. Даже если кто-то начнет безразмерно запасать такую энергию впрок, это ничего не изменит. Хватит и чтобы батарейки зарядить, и на пляже позагорать.

. Экономическая выгода . Уже не нужно будет тратиться на покупку дров, угля, бензина. Бесплатный солнечный свет будет отвечать за работу водоснабжения и автомобиля, кондиционера и телевизора, холодильника и компьютера.

. Экологически выгодно . Уйдет в прошлое тотальная вырубка лесов, не нужно будет топить печи, строить очередные "чернобыли" и "фукусимы", жечь мазут и нефть. Зачем прикладывать столько сил к уничтожению природы, когда в небе есть прекрасный и неиссякаемый источник энергии - Солнце.

К счастью, это не мечты. По оценкам ученых, уже к 2020 году 15% электроэнергии в Европе будет обеспечиваться за счет солнечного света. И это только начало.

Где используют солнечную энергию

. Солнечные батареи . Батареи, установленные на крыше дома, уже никого не удивляют. Поглощая энергию солнца, они преобразуют ее в электрическую. В Калифорнии, например, любой проект нового дома подразумевает обязательное использование солнечной батареи. А в Голландии город Херхюговард называют "городом Солнца", потому что здесь все дома оснащены солнечными батареями.

. Транспорт .

Уже сейчас все космические корабли во время автономного полета обеспечивают себя электричеством за счет энергии солнца.

Автомобили на солнечных батареях. Первая модель такого автомобиля была представлена еще в 1955 году. А уже в 2006 году французская компания Venturi наладила серийный выпуск "солнечных" автомобилей. Характеристики его пока скромны: всего 110 километров автономного хода и скорость не выше 120 км/ч. Но практически все мировые лидеры автомобильной промышленности разрабатывают свои версии экологически чистых авто.

. Солнечные электростанции .

. Гаджеты . Уже сейчас есть зарядки для многих устройств, которые работают от солнца.

Виды солнечной энергии (солнечные электростанции)

В настоящее время разработано несколько видов солнечных электростанций (СЭС):

. Башенные . Принцип работы прост. Огромное зеркало (гелиостат) поворачивается вслед за солнцем и направляет солнечные лучи на теплоприемник, заполненный водой. Далее все происходит как в обычной ТЭЦ: вода закипает, превращается в пар. Пар крутит турбину, которая задействует генератор. Последний и вырабатывает электричество.

. Тарельчатые . Принцип работы схож с башенными. Отличие заключается в самой конструкции. Во-первых, используется не одно зеркало, а несколько круглых, похожих на огромные тарелки. Зеркала устанавливают радиально, вокруг приемника.

Каждая тарельчатая СЭС может иметь сразу несколько подобных модулей.

. Фотовольтаические (использующие фотобатареи).

. СЭС с параболоцилиндрическим концентратором . Огромное зеркало в форме цилиндра, где в фокусе параболы установлена трубка с теплоносителем (чаще всего используют масло). Масло разогревается до нужной температуры и отдает тепло воде.

. Солнечно-вакуумные . Участок земли закрывают стеклянной крышей. Воздух и почва под ней нагреваются сильнее. Специальная турбина гонит теплый воздух к приемной башне, возле которой установлен электрогенератор. Электричество вырабатывается за счет разницы температур.

Использование энергии ветра

Еще один вид альтернативного и возобновляемого источника энергии - ветер. Чем сильнее ветер, тем большее количество кинетической энергии он вырабатывает. А кинетическую всегда можно преобразовать в механическую или электрическую энергию.

Механическую энергию, получаемую за счет ветра, используют уже давно. Например, при помоле зерна (знаменитые ветряные мельницы) или перекачивания воды.

Энергию ветра используют также:

В ветряных установках, которые вырабатывают электричество. Лопасти заряжают аккумулятор, от которого ток подается в преобразователи. Здесь постоянный ток преобразуется в переменный.

Транспорт. Уже сейчас есть автомобиль, который едет за счет энергии ветра. Специальная ветровая установка (кайт) позволяет двигаться и водным судам.

Виды ветряной энергии (ветряные электростанции)

. Наземные - самый распространенный вид. Такие ВЭС устанавливают на холмах или возвышенностях.

. Шельфовые . Их строят на мелководье, в значительном удалении от берегов. Электричество поступает на сушу по подводным кабелям.

. Прибрежные - устанавливают на некотором удалении от моря или океана. Прибрежные ВЭС используют силу бризов.

. Плавающие . Первый плавающий ветрогенератор был установлен в 2008 году недалеко от берегов Италии. Генераторы устанавливают на специальных платформах.

. Парящие ВЭС размещают на высоте на специальных подушках, выполненных из невоспламеняемых материалов и наполненных гелием. Электричество на землю подается по канатам.

Перспективы и развитие

Самые серьезные перспективные планы по использованию энергии солнца ставит перед собой Китай, который к 2020 году планирует стать мировым лидером в этой области. Страны ЕЭС разрабатывают концепцию, которая позволит получать до 20% электроэнергии из альтернативных источников. Американское Министерство энергетики называет меньшую цифру - к 2035 году до 14%. Есть СЭС и в России. Одна из самых мощных установлена в Кисловодске.

Что касается использования энергии ветра, то приведем некоторые цифры. Европейская Ассоциация ветровой энергетики опубликовала данные, которые показывают, что ветроэнергетические установки обеспечивают электричеством многие страны мира. Так, в Дании, за счет таких установок получают 20% потребляемой электроэнергии, в Португалии и Испании - 11%, в Ирландии - 9%, в Германии - 7%.

В настоящее время ВЭС установлены более чем в 50 странах мира, а их мощность растет из года в год.

Энергия солнца – это всего лишь поток фотонов. И вместе с тем это – один из основополагающих факторов, обеспечивающих само существование жизни в нашей биосфере. Поэтому вполне естественно, что солнечный свет активно используется человеком не только в климатическом аспекте, но и в качестве альтернативного источника энергии.

Где используется солнечная энергия

Сфера применения энергии солнца очень обширна, и с каждым годом она становится все больше. Так, еще совсем недавно дачный душ с солнечным нагревателем воспринимался как нечто необыкновенное, а возможность использования солнечного света для домашних электросетей и вовсе казалась фантастикой. Сегодня же никого не удивишь не только автономной гелиостанцией, но и мобильными зарядками на солнечных батареях и даже мелкой техникой (например, часами), работающей на фотогальваническом эффекте.

Вообще же использование солнечной энергии очень востребовано в таких областях, как:

  • Сельское хозяйство;
  • Энергоснабжение санаториев и пансионатов;
  • Космическая отрасль;
  • Природоохранная деятельность и экотуризм;
  • Электрификация отдаленных и сложнодоступных регионов;
  • Уличное, садовое и декоративное освещение;
  • Сфера ЖКХ (ГВС, придомовое освещение);
  • Мобильная техника (гаджеты и зарядные модули на солнечных батареях).

Ранее энергия солнца использовалась главным образом в космической отрасли (энергоснабжение спутников, станций и т.д.) и в промышленности, но со временем альтернативную энергетику начали активно развивать и в быту. Одними из первых объектов, оснащенных солнечными установками, стали южные пансионаты и санатории, особенно расположенные в уединенных районах.

Солнечные установки и их преимущества

Успешное применение первых гелиомодулей доказало, что энергия солнечных лучей обладает массой преимуществ перед традиционными источниками. Ранее главными достоинствами гелиоустановок называли лишь экологичность и неисчерпаемость (а также бесплатность) солнечного света.

Но на самом деле список достоинств гораздо шире:

  • Автономность, так как не требуется никаких внешних энергокоммуникаций;
  • Стабильность подачи питания, в силу специфики солнечный ток не подвержен скачкам напряжения;
  • Экономичность, так как средства тратятся только один раз, при монтаже установки;
  • Солидный ресурс эксплуатации (свыше 20 лет);
  • Всесезонное использование, солнечные установки эффективно работают даже в морозы и облачную погоду (с незначительным снижением КПД);
  • Простота и удобство сервисного обслуживания, так как требуется только изредка очищать лицевые стороны панелей от загрязнений.

Единственным недостатком можно назвать только зависимость от солнца и тот факт, что такие установки не работают ночью. Но эта проблема решается за счет подключения специальных аккумуляторов, в которых накапливается выработанная за день энергия солнечного света.

Фотоэнергия

Фотоэнергия – это один из двух способов использования излучения солнца. Это постоянный ток, вырабатываемый под действием солнечных лучей. Происходит такое преобразование в так называемых фотоячейках, которые, по сути, представляют собой двухслойную структуру из двух полупроводников разного типа. Нижний полупроводник относится к p-типу (с недостатком электронов), верхний – к n-типу с избытком электронов.

Электроны n-проводника поглощают энергию падающих на них лучей солнца и покидают свои орбиты, причем энергетического импульса достаточно для того, чтобы они перешли в зону p-проводника. При этом образуется направленный электронный поток, называемый фототоком. Иными словами, вся структура работает как своеобразные электроды, в которых под воздействием солнца генерируется электроэнергия.

Для производства таких фотоячеек применяют кремний. Объясняется это тем, что кремний во-первых, широко распространен, а во-вторых, его промышленная обработка не требует больших затрат.

Фотоячейки из кремния бывают:

  • Монокристаллическими. Изготавливаются из монокристаллов и отличаются равномерной структурой с чуть более высоким КПД (примерно 20%), но при этом дороже стоят.
  • Поликристаллическими. Имеют неравномерную структуру за счет использования поликристаллов и несколько более низкий КПД (15-18%), но гораздо дешевле моновариантов.
  • Тонкопленочными. Изготавливаются методом напыления аморфного кремния на тонкопленочную подложку. Отличаются гибкой структурой и самой низкой себестоимостью производства, однако имеют вдвое больше габариты по сравнению с кристаллическими аналогами той же мощности.

Сферы применения каждого типа ячеек весьма обширны и определяются их эксплуатационными особенностями.

Солнечные коллекторы

Гелиоколлекторы также используются как преобразователи солнечной энергии, но принцип их действия совершенно иной. Они преобразуют падающий свет не в электрическую, а в тепловую энергию за счет нагрева жидкого теплоносителя. Применяют их либо для ГВС, либо для отопления домов. Главный элемент любого коллектора – абсорбер, он же – теплопоглотитель. Абсорбер представляет собой либо плоскую пластину, либо трубчатую вакуумированную систему, внутри которой циркулирует теплоноситель (это или простая вода, или антифриз). Причем абсорбер обязательно красится в черный цвет специальной краской для увеличения коэффициентов поглощения.

Именно по типу абсорберов коллекторы делят на плоские и вакуумные. У плоских теплопоглотитель выполняют в виде металлической пластины, к которой снизу припаян металлический же змеевик с теплоносителем. У вакуумных абсорбер изготавливается их нескольких соединенных между собой на концах стеклянных трубок. Трубки делают двойными, между стенками создают вакуум, а внутри помещают стержень с теплоносителем. Все стержни сообщаются между собой посредством специальных соединителей в местах стыков труб.

Абсорберы обоих типов помещают в прочный легкий корпус (обычно – из алюминия или ударопрочных пластиков) и надежно теплоизолируют от стенок. Лицевая же сторона корпуса закрывается прозрачным ударостойким стеклом с максимальной проницаемостью для фотонов. Это обеспечивает лучшее поглощение солнечной энергии.

Особенности функционирования

Принцип работы обоих типов коллекторов аналогичен. Нагреваясь в коллекторе до высоких температур, теплоноситель проходит по соединительным шлангам в теплообменный бак, который наполнен водой. Через бак он проходит по змеевидной трубке, отдавая свое тепло воде. Остывший теплоноситель выходит из бака и подается обратно в коллектор. По сути, это – своеобразный «солнечный» кипятильник», только вместо нагревательной спирали используется змеевик в баке, а вместо электросети – солнечный свет.

Конструктивные различия определяют и разницу в применении вакуумных и плоских коллекторов. Использование солнечного излучения при помощи вакуумных моделей возможно круглый год, в том числе и зимой, и в межсезонье. Плоские же варианты лучше работают в летний период. Однако они дешевле и проще вакуумных, поэтому оптимально подходят именно для сезонных целей.

Солнечная энергия в городах (экодома)

Гелиоэнергетика активно применяется не только для частных домов, но и для городских строений. Как человек использует солнечную энергию в мегаполисах, догадаться не сложно. Она также применяется для обогрева и ГВС зданий, причем нередко – целых кварталов.

В последние годы активно развиваются и воплощаются концепции экодомов, полностью работающих на альтернативных источниках энергии. В них используются комбинированные системы, обеспечивающие эффективное получение солнечной, ветровой и тепловой энергии земли. Нередко такие дома не только целиком покрывают свои энергетические нужды, но и передают излишки в городские сети. Причем совсем недавно проекты таких экозданий появились и в России.

Гелиостанции и их виды

В южных регионах с высокой инсоляцией строят не просто отдельные гелиоустановки, но целые станции, вырабатывающие энергию в промышленных масштабах. Количество солнечной энергии, производимое ими, весьма велико и многие страны с подходящим климатом уже начали постепенный перевод всей энергосистемы на такой альтернативный вариант. По принципу работу станции делят на фототермические и фотоэлектрические. Первые работают по методу коллекторов и подают в дома разогретую воду для ГВС, вторые же вырабатывают непосредственно электричество.

Существует несколько видов гелиостанций:

  • Башенные. Позволяют получать сверхнагретый водяной пар, подаваемый на генераторы. В центре станции базируется башня с водным резервуаром, вокруг нее размещают гелиостаты (зеркальные), которые фокусируют лучи на резервуаре. Это достаточно эффективные станции, главный их недостаток – сложность точного позиционирования зеркал.
  • Тарельчатые. Состоят из приемника гелиоэнергии и отражателя. Отражатель – тарелкообразное зеркало, концентрирующее излучение на приемнике. Такие концентраторы солнечной энергии располагаются на небольшом удалении от приемника, а их количество определяется требуемой мощностью установки.
  • Параболические. Трубки с теплоносителем (обычно – маслом) помещают в фокусе длинного параболического зеркала. Разогретое масло отдает тепло воде, та вскипает и вращает генераторы.
  • Аэростатные. По сути, это самые эффективные и мобильные гелиостанции на Земле. Их главный элемент – аэростат с фотоэлектрическим слоем, наполненный водяным паром. Он поднимается высоко в атмосферу (обычно выше облаков). Разогретый пар из шара по гибкому паропроводу подается на турбину, на выходе из нее конденсируется и вода насосом поднимается обратно в шар. Попав в шар, вода испаряется и цикл продолжается.
  • На фотобатареях. Это уже привычные всем установки на солнечных батареях, которые используются для частных домов. Они обеспечивают получение электроэнергии и подогрев воды в нужных объемах.

Сегодня разного рода гелиостанции (в том числе и комбинированные, объединяющие несколько типов) играют все большую роль в энерговыработке многих стран. А некоторые государства перестраивают свою энергетику таким образом, чтобы через несколько лет вообще практически полностью перейти на альтернативные системы.

Без энергии невозможна жизнь на планете. Физический закон сохранения энергии говорит о том, энергия не может возникнуть из ничего и не исчезает бесследно. Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например, в тепло или свет. В окружающем нас мире можем находить различные формы накопления энергии, но важнейшим для человека является энергия, которую дают солнечные лучи- солнечная энергия.

Солнечная энергия относится к восстанавливаемым источникам энергии, то есть восстанавливается без участия человека, естественным путем. Это один из экологически безопасных энергетических источников, который не загрязняет окружающую среду. Возможности применения солнечной энергии практически неограниченны и ученые всего мира работают над разработкой систем, которые расширяют возможности использования солнечной энергии .

Один квадратный метр Солнца излучает 62 900 кВт энергии. Это примерно соответствует мощности работы 1 миллиона электрических ламп. Впечатляет такая цифра — Солнце дает Земле ежесекундно 80 тысяч миллиардов кВт, т.е в несколько раз больше, чем все электростанции мира. Перед современной наукой стоит задача — научиться наиболее полно и эффективно использовать энергию Солнца, как наиболее безопасную. Ученые считают, что повсеместное использование солнечной энергии — это будущее человечества.

Мировые запасы открытых месторождений угля и газа, при таких темпах их использования, как сегодня, должны истощиться в ближайшие 100 лет. Подсчитано, что в еще не разведанных месторождениях запасов горючих ископаемых хватило бы на 2-3 столетия. Но при этом наши потомки были бы лишены этих энергоносителей, а продукты их сгорания нанесли бы колоссальный ущерб окружающей среде.

Огромный потенциал имеет атомная энергия. Однако, Чернобыльская авария в апреле 1986 года показала, какие серьезные последствия может повлечь использование ядерной энергии. Общественность всего мира признала, что использование атомной энергии в мирных целях экономически оправдано, но следует соблюдать строжайшие меры безопасности при ее использовании.

Следовательно, наиболее чистый, безопасный источник энергии — Солнце!

Солнечная энергия может быть преобразована в полезную энергию посредством использования активных и пассивных солнечных энергетических систем.

Пассивные системы использования солнечной энергии.

Самый примитивный способ пассивного использования солнечной энергии — это окрашенная в темный цвет емкость для воды. Темный цвет, аккумулируя солнечную энергию , превращает ее в тепловую — вода нагревается.

Однако, есть более прогрессивные методы пассивного использования солнечной энергии . Разработаны строительные технологии, которые при проектировании зданий, учета климатических условий, подбора строительных материалов максимально используют солнечную энергию для обогрева или охлаждения, освещения зданий. При таком проектировании сама конструкция здания является коллектором, аккумулирующей солнечную энергию .

Так, в 100г н.э Плиний Младший построил небольшой дом на севере Италии. В одной из комнат окна сделаны из слюды. Оказалось, что эта комната теплее других и на ее обогрев требовалось меньше дров. В этом случае слюда являлась как изолятор, задерживающий тепло.

Современные строительные конструкции учитывают географическое положение зданий. Так, большое количество окон, выходящие на южную сторону, предусматривают в северных регионах, чтобы поступало больше солнечного света и тепла, и ограничивают количество окон с восточной и западной стороны, чтобы ограничить поступление солнечного света летом. В таких зданиях ориентация окон и расположение, тепловая нагрузка и теплоизоляция — единая конструкторская система при проектировании.

Такие здания экологически чистые, энергетически независимые и комфортные. В помещениях много естественного света, более полно ощущается связь с природой, к тому же существенно экономится электроэнергия. Тепло в таких зданиях сохраняется благодаря подобранным теплоизоляционным материалам стен, потолков, полов. Такие первое «солнечные» здания приобрели огромную популярность в Америке после Второй мировой войны. Впоследствии, из-за снижения цен на нефть, интерес к проектировке таких зданий несколько угас. Однако, сейчас, в связи с глобальным экологическим кризисом, наблюдается рост внимания к экологическим проектам с возобновляющимся энергетическим системам возросла вновь.

Активные системы использования солнечной энергии

В основе активных систем использования солнечной энергии применяются солнечные коллекторы. Коллектор, поглощая солнечную энергию , преобразует ее в тепло, которое через теплоноситель обогревает здания, нагревает воду, может преобразовать его в электрическую энергию и т.д. Солнечные коллекторы могут применятся во всех процессах в промышленности, сельском хозяйстве, бытовых нуждах, где используется тепло.

Виды коллекторов

воздушный солнечный коллектор

Это простейший вид солнечных коллекторов. Его конструкция предельно проста и напоминает эффект обычной теплицы, которая есть на любом дачном участке. Проведите небольшой эксперимент. В зимний солнечный день положите на подоконник любой предмет так, чтобы на него падали солнечные лучи и через некоторое время положите на него ладонь. Вы почувствуете, что этот предмет стал теплым. А за окном может быть — 20! Вот на этом принципе и основана работа солнечного воздушного коллектора.

Основной элемент коллектора — теплоизолированная пластина, сделанная из любого материала, который хорошо проводит тепло. Пластина окрашена в темный цвет. Солнечные лучи проходят через прозрачную поверхность, нагревают пластину, а потом потоком воздуха передают тепло в помещение. Воздух проходит благодаря естественной конвенции или при помощи вентилятора, что улучшает теплопередачу.

Однако, недостаток работы этой системы в том, что требуются дополнительные расходы на работу вентилятора. Эти коллекторы работают в течении светового дня, поэтому не могут заменить основной источник отопления. Однако, если вмонтировать коллектор в основной источник отопления или вентиляции, его КПД несоизмеримо возрастает. Солнечные воздушные коллекторы могут использоваться и для опреснения морской воды, что снижает ее себестоимость до 40 евроцентов за куб м.

Солнечные коллекторы могут быть плоскими и вакуумными.

плоский солнечный коллектор

Коллектор состоит из элемента, поглощающего солнечную энергию, покрытия (стекло с пониженным содержанием металла) , трубопровода и термоизолирующего слоя. Прозрачное покрытие защищает корпус от неблагоприятных климатических условий. Внутри корпуса панель поглотителя солнечной энергии (абсорбера) соединена с теплоносителем, который циркулирует по трубам. Трубопровод может быть как в виде решетки, так и в виде серпантина. Теплоноситель движется по ним от входных до выходных патрубков, постепенно нагреваясь. Панель поглотителя изготавливается из металла, хорошо проводящему тепло (алюминий, медь).

Коллектор улавливает тепло, превращая его в тепловую энергию. Такие коллекторы можно вмонтировать в крышу или расположить на крыше здания, а можно расположить их отдельно. Это придаст дизайну участка современный вид.

Вакуумный солнечный коллектор

Вакуумные коллекторы могут использоваться круглый год. Основным элементом коллекторов являются вакуумные трубки. Каждая из них состоит из двух стеклянных труб. Трубы изготавливают из боросиликатного стекла, причем внутренняя покрыта специальным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Из пространства между трубками выкачан воздух,. Для поддержания вакуума используется бариевый газопоглотитель. В исправном состоянии вакуумная трубка имеет серебристый цвет. Если она выглядит белой, то это значит, что вакуум исчез и трубку надо заменить.

Вакуумный коллектор состоит из комплекса вакуумных трубок (10-30) и осуществляет передачу тепла в накопительный резервуар через незамерзающую жидкость (теплоноситель). КПД вакуумных коллекторов высок:

— при облачной погоде, т.к. вакуумные трубки могут поглощать энергию инфракрасных лучей, которые проходят через облака

— могут работать при минусовых температурах.

Солнечные батареи.

Солнечная батарея — это набор модулей, воспринимающих и преобразующих солнечную энергию, в том числе и тепловых. Но этот термин традиционно закрепился за фитоэлектрическими преобразователями. Поэтому, говоря «солнечная батарея» подразумеваем фитоэлектрическое устройство, преобразующее солнечную энергию в электрическую.

Солнечные батареи способны генерировать электрическую энергию постоянно или аккумулировать ее для дальнейшего использования. Впервые фотоэлектрические батареи были применены в на космических спутниках.

Достоинство солнечных батарей — максимальная простота конструкции, простой монтаж, минимальные требования к облуживанию, большой срок эксплуатации. При установке не требуют дополнительного места. Единственное условие — не затенять их в течении длительного времени и удалять пыль с рабочей поверхности. Современные солнечные батареи способны сохранять работоспособность в течении десятилетий! Трудно найти систему настолько безопасную, эффективную и с таким длительным сроком действия! Они вырабатывают энергию в течении всего светового дня, даже в пасмурную погоду.

Солнечные батареи имеют свои недостатки в применении:

— чувствительность к загрязнениям. (Если расположить батарею под углом 45 градусов, то она будет очищена дождями или снегом, тем самым не потребуется дополнительного обслуживания)

— чувствительность к высокой температуре. (Да, при нагреве до 100 — 125 градусов солнечная батарея может даже отключиться и может потребоваться система охлаждения. Вентиляционная систстема при этом затратит малую долю вырабатываемой батареей энергии. В современных конструкциях солнечных батарей предусмотрена система оттока горячего воздуха.)

— высокая цена. (Принимая во внимание длительный срок службы солнечных батарей, то она не только окупит затраты на ее приобретение, но и сэкономит средства при потреблении электроэнергии, сэкономит тонны традиционных видов топлива при том экологически безопасна)

Использование солнечных энергетических систем в строительстве.

В современной архитектуре все чаще планируют строить дома с встроенными аккумуляторными источниками солнечной энергии. Солнечные батареи устанавливают на крышах зданий или на специальных опорах. Эти здания используют тихий, надежный и безопасный источник энергии — Солнце. Солнечная энергия используется для освещения, отопления помещений, охлаждения воздуха, вентиляции, производства электроэнергии.

Представляем несколько инновационных архитектурных проектов с использованием солнечных систем.

Фасад этого здания сконструирован из стекла, железа, алюминия с встроенными аккумуляторами солнечной энергии. Производимой энергии достаточно, чтобы не только обеспечить жителей дома автономным горячим водоснабжением и электричеством, но и освещать улицу 2,5 км в течении года.

Этот дом спроектировала группа американских студентов. Проект был представлен на конкурс «Проектирование, строительство домов и эксплуатация солнечных батарей». Условия конкурса: представить архитектурный проект жилого дома при его экономической эффективности, энергосбережении и привлекательности. Авторы проекта доказали, что их проект доступен, привлекателен для потребителя, сочетает превосходный дизайн и максимальную эффективность. (перевод с сайта www.solardecathlon.gov)

Использование систем солнечной энергии в мире.

Системы использования солнечной энергии совершенны и экологически безопасны. Во всем мире на них огромный спрос. Во всем мире люди начинают отказываются от использования традиционных видов топлива из-за роста цен на газ и нефть. Так, в Германии в 2004г. 47% домов имели солнечные коллекторы для нагрева воды.

Во многих странах мира разработаны государственные программы развития использования солнечной энергии . В Германии это программа «100 000 солнечных крыш», в США аналогичная программа «Миллион солнечных крыш». В 1996г. архитекторы Германии, Австрии, Великобритании, Греции и др. стран разработали Европейскую хартию о солнечной энергии в строительстве и архитектуре. В Азии лидирует Китай, где на основе современных технологий внедряются системы солнечных коллекторов в строительство зданий и использование солнечной энергии в промышленности.

Факт, который говорит о многом: одним из условий вступления в Евросоюз является рост доли альтернативных источников в энергосистеме страны. В 2000г. в мире работало 60 млн кв км солнечных коллекторов, к 2010г из площадь возросла до 300 млн кв км.

Эксперты отмечают, рынок систем солнечной энергии на территории России, Украины и Белоруссии только формируется. Солнечные системы никогда не производились в больших масштабах, потому что сырьевые ресурсы были настолько дешевы, что дорогостоящее оборудование гелиосистем было не востребовано… Выпуск коллекторов, в России, например, почти полностью прекращен.

В связи с подорожанием традиционных энергоносителей, наметилось оживление интереса с применению солнечных систем. В ряде регионов этих стран, испытывающих дефицит энергоресурсов, принимаются локальные программы по использованию гелиосистем, но широкому потребительскому рынку солнечные системы практически не знакомы.

Главная причина медленного развития рынка продажи и использования солнечных систем является, во-первых, их высокая начальная стоимость, во-вторых, недостаток информации о возможностях солнечных систем, передовых технологиях их использования, о разработчиках и изготовителях гелиосистем. Все это не может дать возможности правильно оценить эффективность применения систем, работающих на солнечной энергии .

Надо иметь в виду, что солнечный коллектор — не конечная продукция. Для получения конечной продукции — тепла, электроэнергии, горячей воды — надо пройти путь от проектирования, монтажа до пуска гелиосистем. Небольшой имеющийся опыт использования солнечных коллекторов показывает, что эта работа не сложнее монтажа традиционного отопления, но экономическая эффективность значительно выше.

В Белоруссии, России, на Украине есть множество фирм, занимающиеся проектировкой и монтажом оборудования отопления, но приоритет имеют сегодня традиционные энергоносители. Развитие экономических процессов, мировой опыт использования систем солнечной энергии показывает, что будущее за альтернативными источниками энергии. На ближайшее будущее можно отметить, что гелиосистемы являются новой, практически не занятой позицией нашего рынка.

Главная > Реферат

Муниципальное общеобразовательное учреждение «Лицей №43»

ИСПОЛЬЗОВАНИЕ
СОЛНЕЧНОЙ ЭНЕРГИИ

Выполнил: ученик 8А классаНикулин АлексейПроверила: Власкина Мария Николаевна

Саранск, 2008

ВВЕДЕНИЕ

Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

СКОЛЬКО СОЛНЕЧНОЙ ЭНЕРГИИ ПОПАДАЕТ НА ЗЕМЛЮ?

Солнце излучает огромное количество энергии - приблизительно 1,1x1020 кВт·ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 1018) кВт·ч ежегодно. Однако из-за отражения, рассеивания и поглощения ее атмосферными газами и аэрозолями только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 1017) кВт·ч, достигает поверхности Земли.

ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ

В большинстве стран мира количество солнечной энергии, попадающей на крыши и стены зданий, намного превышает годовое потребление энергии жителями этих домов. Использование солнечного света и тепла - чистый, простой, и естественный способ получения всех форм необходимой нам энергии. При помощи солнечных коллекторов можно обогреть жилые дома и коммерческие здания и/или обеспечить их горячей водой. Солнечный свет, сконцентрированный параболическими зеркалами (рефлекторами), применяют для получения тепла (с температурой до нескольких тысяч градусов Цельсия). Его можно использовать для обогрева или для производства электроэнергии. Кроме этого, существует другой способ производства энергии с помощью Солнца - фотоэлектрические технологии. Фотоэлектрические элементы - это устройства, которые преобразовывают солнечную радиацию непосредственно в электричество.Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. К активным солнечным системам относятся солнечные коллекторы и фотоэлектрические элементы. Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца.Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца "управляет" погодой на Земле. Большая доля солнечной радиации поглощается океанами и морями, вода в которых нагревается, испаряется и в виде дождей выпадает на землю, "питая" гидроэлектростанции. Ветер, необходимый ветротурбинам, образуется вследствие неоднородного нагревания воздуха. Другая категория возобновляемых источников энергии, возникающихблагодаря энергии Солнца - биомасса. Зеленые растения поглощают солнечный свет, в результате фотосинтеза в них образуются органические вещества, из которых впоследствии можно получить тепловую и электрическую энергию. Таким образом, энергия ветра, воды и биомассы является производной солнечной энергии.

ПАССИВНОЕ ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ

Пассивные солнечные здания - это те, проект которых разработан с максимальным учетом местных климатических условий, и где применяются соответствующие технологии и материалы для обогрева, охлаждения и освещения здания за счет энергии Солнца. К ним относятся традиционные строительные технологии и материалы, такие как изоляция, массивные полы, обращенные к югу окна. Такие жилые помещения могут быть построены в некоторых случаях без дополнительных затрат. В других случаях возникшие при строительстве дополнительные расходы могут быть скомпенсированы снижением энергозатрат. Пассивные солнечные здания являются экологически чистыми, они способствуют созданию энергетической независимости и энергетически сбалансированному будущему.В пассивной солнечной системе сама конструкция здания выполняет роль коллектора солнечной радиации. Это определение соответствует большинству наиболее простых систем, где тепло сохраняется в здании благодаря его стенам, потолкам или полам. Есть также системы, где предусмотрены специальные элементы для накопления тепла, вмонтированные в конструкцию здания (например, ящики с камнями или заполненные водой баки или бутыли). Такие системы также классифицируются как пассивные солнечные. Пассивные солнечные здания - идеальное место для жизни. Здесь полнее ощущается связь с природой, в таком доме много естественного света, в нем экономится электроэнергия.

ИСТОРИЯ

Исторически сложилось так, что на проектирование зданий влияли местные климатические условия и доступность строительных материалов. Позднее человечество отделило себя от природы, идя по пути господства и контроля над ней. Этот путь привел к однотипному стилю зданий практически для любой местности. В 100 году н. э. историк Плиний Младший построил летний домик в Северной Италии, в одной из комнат которого были окна из тонкой слюды. Комната была теплее других, и для ее обогрева требовалось меньше дров. В известных римских банях в I-IV ст. н. э. специально устанавливались большие окна, выходящие на юг, для того чтобы больше солнечного тепла поступало в здание. К VI ст. солнечные комнаты в домах и общественных зданиях стали настолько обычны, что Джастиниан Коуд ввел "право на солнце", чтобы гарантировать индивидуальный доступ к солнцу. В XIX веке были очень популярны оранжереи, в которых было модно прогуливаться под сенью пышной растительной листвы.Из-за перебоев с электроэнергией во время второй мировой войны к концу 1947 года в Соединенных Штатах здания, пассивно использующие солнечную энергию, пользовались таким огромным спросом, что "Libbey-Owens-Ford Glass Company" издала книгу под названием "Ваш Солнечный Дом", в которой были представлены 49 лучших проектов солнечных зданий. В середине 50-х годов ХХ века, архитектор Франк Брайдджерс разработал первое в мире пассивное солнечное здание для офисного помещения. Установленная в нем солнечная система для горячего водоснабжения работает с того времени бесперебойно. Само же здание "Брайдджерс-Пэкстон" занесено в национальный исторический регистр страны как первое в мире офисное здание, обогреваемое при помощи энергии Солнца.Низкие цены на нефть после второй мировой войны отвлекли внимание населения от солнечных зданий и вопросов энергоэффективности. Начиная с середины 1990-х, рынок меняет свое отношение к экологии и использованию возобновляемой энергии, и в строительстве появляются тенденции, для которых характерно сочетание проекта будущего здания с окружающей природой.

ПАССИВНЫЕ СОЛНЕЧНЫЕ СИСТЕМЫ

Существует несколько основных способов пассивного использования солнечной энергии в архитектуре. Используя их, можно создать множество различных схем, тем самым получая разнообразные проекты зданий. Приоритетами при постройке здания с пассивным использованием солнечной энергии являются: удачное расположение дома; большое количество окон, обращенных к югу (в Северном полушарии), чтобы пропускать больше солнечного света в зимнее время (и наоборот, небольшое количество окон, обращенных на восток или запад, чтобы ограничить поступление нежелательного солнечного света в летнее время); правильный расчет тепловой нагрузки на внутренние помещения, чтобы избежать нежелательных колебаний температуры и сохранять тепло в ночное время, хорошо изолированная конструкция здания.Расположение, изоляция, ориентация окон и тепловая нагрузка на помещения должны представлять собой единую систему. Для уменьшения колебаний внутренней температуры изоляция должна быть помещена с внешней стороны здания. Однако в местах с быстрым внутренним обогревом, где требуется немного изоляции, или с низкой теплоемкостью, изоляция должна быть с внутренней стороны. Тогда дизайн здания будет оптимальным при любом микроклимате. Стоит отметить и тот факт, что правильный баланс между тепловой нагрузкой на помещения и изоляцией ведет не только к сбережению энергии, но также и к экономии строительных материалов.

СОЛНЕЧНАЯ АРХИТЕКТУРА И АКТИВНЫЕ СОЛНЕЧНЫЕ
СИСТЕМЫ

Во время проектирования здания также следует учитывать применение активных солнечных систем (см. ниже), таких как солнечные коллекторы и фотоэлектрические батареи. Это оборудование устанавливается на южной стороне здания. Чтобы максимизировать количество тепла в зимнее время, солнечные коллекторы в Европе и Северной Америке должны устанавливаться с углом наклона более 50° от горизонтальной плоскости. Неподвижные фотоэлектрические батареи получают в течение года наибольшее количество солнечной радиации, когда угол наклона относительно уровня горизонта равняется географической широте, на которой расположено здание. Угол наклона крыши здания и его ориентация на юг являются важными аспектами при разработке проекта здания. Солнечные коллекторы для горячего водоснабжения и фотоэлектрические батареи должны быть расположены в непосредственной близости от места потребления энергии. Важно помнить, что близкое расположение ванной комнаты и кухни позволяет сэкономить на установке активных солнечных систем (в этом случае можно использовать один солнечный коллектор на два помещения) и минимизировать потери энергии на транспортировку. Главным критерием при выборе оборудования является его эффективность.

РЕЗЮМЕ

Пассивное использование солнечного света обеспечивает примерно 15% потребности обогрева помещений в стандартном здании и является важным источником энергосбережения. При проектировании здания необходимо учитывать принципы пассивного солнечного строительства для максимального использования солнечной энергии. Эти принципы можно применять везде и практически без дополнительных затрат.

СОЛНЕЧНЫЕ КОЛЛЕКТОРЫ

С древнейших времен человек использует энергию Солнца для нагрева воды. В основе многих солнечных энергетических систем лежит применение солнечных коллекторов. Коллектор поглощает световую энергию Солнца и преобразует ее в тепло, которое передается теплоносителю (жидкости или воздуху) и затем используется для обогрева зданий, нагрева воды, производства электричества, сушки сельскохозяйственной продукции или приготовления пищи. Солнечные коллекторы могут применяться практически во всех процессах, использующих тепло.Для типичного жилого дома или квартиры в Европе и Северной Америке нагрев воды - это второй по энергоемкости домашний процесс. Для ряда домов он даже является самым энергоемким. Использование энергии Солнца способно снизить стоимость бытового нагрева воды на 70%. Коллектор предварительно подогревает воду, которая затем подается на традиционную колонку или бойлер, где вода нагревается до нужной температуры. Это приводит к значительной экономии средств. Такую систему легко установить, она почти не требует ухода.В наши дни солнечные водонагревательные системы используются в частных домах, многоквартирных зданиях, школах, автомойках, больницах, ресторанах, в сельском хозяйстве и промышленности. У всех перечисленных заведений есть нечто общее: в них используется горячая вода. Владельцы домов и руководители предприятий уже смогли убедиться в том, что солнечные системы для нагрева воды являются экономически выгодными и способны удовлетворить потребность в горячей воде в любом регионе мира.

ИСТОРИЯ

Люди нагревали воду при помощи Солнца с давних времен, до того, как ископаемое топливо заняло лидирующее место в мировой энергетике. Принципы солнечного отопления известны на протяжении тысячелетий. Покрашенная в черный цвет поверхность сильно нагревается на солнце, тогда как светлые поверхности нагреваются меньше, белые же меньше всех остальных. Это свойство используется в солнечных коллекторах - наиболее известных приспособлениях, непосредственно использующих энергию Солнца. Коллекторы были разработаны около двухсот лет назад. Самый известный из них - плоский коллектор - был изготовлен в 1767 году швейцарским ученым по имени Гораций де Соссюр. Позднее им воспользовался для приготовления пищи сэр Джон Гершель во время своей экспедиции в Южную Африку в 30-х годах ХIX века.Технология изготовления солнечных коллекторов достигла практически современного уровня в 1908 году, когда Вильям Бейли из американской "Carnegie Steel Company" изобрел коллектор с теплоизолированным корпусом и медными трубками. Этот коллектор весьма походил на современную термосифонную систему (см. ниже). К концу первой мировой войны Бейли продал 4 000 таких коллекторов, а бизнесмен из Флориды, купивший у него патент, к 1941 году продал почти 60 000 коллекторов. Введенное в США во время второй мировой войны нормирование меди привело к резкому падению рынка солнечных обогревателей.До всемирного нефтяного кризиса 1973 года эти устройства пребывали в забвении. Однако кризис пробудил новый интерес к альтернативным источникам энергии. В результате возрос спрос и на солнечную энергию. Многие страны живо интересуются развитием этой области. Эффективность систем солнечного отопления с 1970-х постоянно возрастает благодаря использованию для покрытия коллекторов закаленного стекла с пониженным содержанием железа (оно пропускает больше солнечной энергии, чем обычное стекло), улучшенной теплоизоляции и прочному селективному покрытию.

ТИПЫ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ

Типичный солнечный коллектор накапливает солнечную энергию в установленных на крыше здания модулях трубок и металлических пластин, окрашенных в черный цвет для максимального поглощения радиации. Они заключены в стеклянный или пластмассовый корпус и наклонены к югу, чтобы улавливать максимум солнечного света. Таким образом, коллектор представляет собой миниатюрную теплицу, накапливающую тепло под стеклянной панелью. Поскольку солнечная радиация распределена по поверхности, коллектор должен иметь большую площадь.Существуют солнечные коллекторы различных размеров и конструкций в зависимости от их применения. Они могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей. В настоящее время рынок предлагает множество различных моделей коллекторов. Их можно разделить на несколько категорий. К примеру, различают несколько видов коллекторов в соответствии с температурой, которую они дают:Низкотемпературные коллекторы производят низкопотенциальное тепло, ниже 50 градусов Цельсия. Используются они для подогрева воды в бассейнах и в других случаях, когда требуется не слишком горячая вода.Среднетемпературные коллекторы производят высоко- и среднепотенциальное тепло (выше 50 С, обычно 60-80 С). Обычно это остекленные плоские коллекторы, в которых теплопередача совершается посредством жидкости, либо коллекторы-концентраторы, в которых тепло концентрируется. Представителем последних является коллектор вакуумированный трубчатый, который часто используется для нагрева воды в жилом секторе.Высокотемпературные коллекторы представляют собой параболические тарелки и используются в основном электрогенерирующими предприятиями для производства электричества для электросетей.

ПРИНЦИП ДЕЙСТВИЯ

Воздушные солнечные коллекторы можно разделить на группы по способу циркуляции воздуха. В простейшем из них воздух проходит через коллектор под поглотителем. Этот вид коллектора пригоден только для подъема температуры на 3-5 оC из-за высоких потерь тепла на поверхности коллектора через конвекцию и излучение. Эти потери можно значительно снизить, накрыв поглотитель прозрачным материалом с низкой проводимостью инфракрасного излучения. В таком коллекторе поток воздуха возникает либо под поглотителем, либо между поглотителем и прозрачным покрытием. Благодаря прозрачной крышке излучение тепла с поглотителя снижается незначительно, но из-за снижения конвективных теплопотерь можно достичь подъема температуры на 20-50 оC в зависимости от количества солнечной радиации и интенсивности воздушного потока. Можно добиться дальнейшего снижения тепловых потерь, проведя воздушный поток и над поглотителем и под ним, так как при этом удваивается площадь поверхности теплопередачи. Потери тепла из-за излучения при этом снизятся благодаря пониженной температуре поглотителя. Однако одновременно происходит и снижение поглотительной способности абсорбера из-за наслоения пыли, если воздушный поток проходит с обеих сторон поглотителя.Некоторые солнечные коллекторы позволяют снизить затраты за счет отказа от остекления, металлического ящика и теплоизоляции. Такой коллектор изготавливают из черных перфорированных металлических листов, которые позволяют достичь хорошего теплообмена. Солнце нагревает металл, а вентилятор втягивает нагретый воздух сквозь отверстия в металле. Такие коллекторы разного размера используются в частных домах. Типичный коллектор размером 2,4 на 0,8 метра может нагревать 0,002 м3 наружного воздуха в секунду. В солнечный зимний день воздух в коллекторе нагревается на 28 оC по сравнению с наружным. При этом улучшается качество воздуха внутри дома, так как коллектор непосредственно нагревает поступающий снаружи свежий воздух. Эти коллекторы достигли очень высокой эффективности - в некоторых случаях промышленного применения она превышает 70%. К тому же они не требуют остекления, изоляции и дешевы в изготовлении.

КОНЦЕНТРАТОРЫ

Фокусирующие коллекторы (концентраторы) используют зеркальные поверхности для концентрации солнечной энергии на поглотителе, который также называется "теплоприемник". Достигаемая ими температура значительно выше, чем на плоских коллекторах, однако они могут концентрировать только прямое солнечное излучение, что приводит к плохим показателям в туманную или облачную погоду. Зеркальная поверхность фокусирует солнечный свет, отраженный с большой поверхности, на меньшую поверхность абсорбера, благодаря чему достигается высокая температура. В некоторых моделях солнечное излучение концентрируется в фокусной точке, тогда как в других лучи солнца концентрируются вдоль тонкой фокальной линии. Приемник расположен в фокусной точке или вдоль фокальной линии. Жидкость-теплоноситель проходит через приемник и поглощает тепло. Такие коллекторы-концентраторы наиболее пригодны для регионов с высокой инсоляцией - близко к экватору и в пустынных районах.Концентраторы работают лучше всего тогда, когда они обращены прямо к Солнцу. Для этого используются следящие устройства, которые в течение дня поворачивают коллектор "лицом" к Солнцу. Одноосные следящие устройства поворачиваются с востока на запад; двуосные - с востока на запад и с севера на юг (чтобы следить за движением Солнца по небу в течение года). Концентраторы используются в основном в промышленных установках, так как они дороги, а следящие устройства нуждаются в постоянном уходе. В некоторых бытовых солнечных энергосистемах используются параболические концентраторы. Эти установки применяются для горячего водоснабжения, отопления и очистки воды. В бытовых системах применяются в основном одноосные следящие устройства - они дешевле и проще двуосных. Больше информации о концентраторах вы найдете в главе о солнечных тепловых электростанциях.

СОЛНЕЧНЫЕ ПЕЧИ И ДИСТИЛЛЯТОРЫ

Существуют и другие недорогие технологически несложные солнечные коллекторы узкого назначения - солнечные печи (для приготовления еды) и солнечные дистилляторы, которые позволяют дешево получить дистиллированную воду практически из любого источника.Солнечные печи дешевы и просты в изготовлении. Они состоят из просторной хорошо теплоизолированной коробки, выстеленной отражающим свет материалом (напимер, фольгой), накрытой стеклом и оборудованной внешним отражателем. Кастрюля черного цвета служит поглотителем, нагреваясь быстрее, чем обычная посуда из алюминия или нержавеющей стали. Солнечные печи можно использовать для обеззараживания воды, если доводить ее до кипения.Солнечные дистилляторы обеспечивают дешевую дистиллированную воду, причем источником может служить даже соленая или сильно загрязненная вода. В их основе лежит принцип испарения воды из открытого контейнера. Солнечный дистиллятор использует энергию Солнца для ускорения этого процесса. Состоит он из теплоизолированного контейнера темного цвета с остеклением, которое наклонено с таким расчетом, чтобы конденсирующаяся пресная вода стекала в специальную емкость. Небольшой солнечный дистиллятор -- размером с кухонную плиту - в солнечный день может вырабатывать до десяти литров дистиллированной воды.

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ

Солнечная энергия используется в следующих случаях:
    обеспечение горячей водой жилых домов, общественных зданий и промышленных предприятий; подогрев бассейнов; отопление помещений; сушка сельскохозяйственной продукции и др.; охлаждение и кондиционирование воздуха; очистка воды; приготовление пищи.
Применяемые технологии являются полностью разработанными, а первые две - в благоприятных условиях также экономически целесообразны. Смотрите ниже отдельную статью о коллекторах-концентраторах, которые с выгодой применяются для производства электроэнергии, особенно в регионах с большим количеством солнечной радиации (см. главу "Солнечные тепловые электростанции").

СОЛНЕЧНЫЕ СИСТЕМЫ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

В настоящее время в нескольких миллионах жилых домов и предприятий пользуются солнечными системами нагрева воды. Это экономичный и надежный вид горячего водоснабжения. Нагрев воды для бытовых целей или отопления с помощью солнечной энергии - естественный и простой метод сбережения энергии и сохранения запасов ископаемого топлива. Хорошо спроектированная и правильно установленная солнечная система может, благодаря своему эстетичному виду, повысить стоимость дома. На новостройках такие системы включаются в общий план строительства, так что они практически незаметны со стороны, тогда как приспособить систему к старой постройке бывает зачастую нелегко.Солнечный коллектор позволяет своему владельцу сэкономить деньги, не оказывая при этом вредного влияния на окружающую среду. Использование одного солнечного коллектора позволяет сократить выбросы в атмосферу углекислого газа на одну-две тонны в год. Переход на солнечную энергию предотвращает выбросы и других загрязнителей, таких как двуокись серы, угарный газ и закись азота.Горячее водоснабжение - наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя. Даже в регионах с относительно небольшим количеством солнечной радиации, например в Северной Европе, солнечная система может обеспечить 50-70% потребности в горячей воде. Больше получить невозможно, разве что с помощью сезонного регулирования (см. главу ниже). В Южной Европе солнечный коллектор может обеспечить 70-90% потребляемой горячей воды. Нагрев воды в помощью энергии Солнца - очень практичный и экономный способ. В то время, как фотоэлектрические системы достигают эффективности 10-15%, тепловые солнечные системы показывают КПД 50-90%. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива.

МОЖЕТ ЛИ СОЛНЕЧНЫЙ КОЛЛЕКТОР СОПЕРНИЧАТЬ
С ПРИВЫЧНЫМИ ОБОГРЕВАТЕЛЯМИ?

Стоимость полной системы горячего водоснабжения и отопления в разных странах значительно отличается: в Европе и США она составляет от 2000 до 4000 долларов США. Зависит она, в частности, и от требований к горячей воде, принятых в данной стране, и от климата. Начальное капиталовложение в такую систему, как правило, выше, чем требуется для установки электро- или газового обогревателя, но с учетом суммы всех расходов общие затраты за весь срок службы солнечных водонагревателей обычно ниже, чем для традиционных систем обогрева. Необходимо отметить, что основной срок окупаемости средств, вложенных в солнечную систему, зависит от цен на ископаемые энергоносители, ею замещаемые. В странах Европейского Союза срок окупаемости составляет обычно менее 10 лет. Ожидаемый срок службы солнечных обогревательных систем -- 20-30 лет.Важной характеристикой солнечной установки является ее энергетическая окупаемость - время, необходимое солнечной установке для выработки такого количества энергии, какое было бы затрачено на ее производство. В Северной Европе, на которую приходится меньше солнечной энергии, чем на другие обитаемые части света, солнечная установка для нагрева горячей воды окупает затраченную на нее энергию за 3-4 года.

ОТОПЛЕНИЕ ПОМЕЩЕНИЙ ПРИ ПОМОЩИ СОЛНЕЧНОЙ ЭНЕРГИИ

Выше мы говорили только о нагреве воды при помощи солнечной энергии. Активная солнечная отопительная установка может не только обеспечивать горячую воду, но и дополнительное отопление через систему центрального теплоснабжения. Для обеспечения производительности такой системы температура центрального отопления должна быть минимальной (желательно около 50 оC), также необходимо аккумулировать тепло для отопления. Удачным решением является комбинация солнечной отопительной установки с подогревом пола, при котором пол является тепловым аккумулятором.Солнечные установки для отопления помещений менее выгодны, чем водонагреватели как с экономической, так и с энергетической точки зрения, так как отопление редко требуется в летнее время. Но если летом нужно отапливать помещения (например, в горных районах), то тогда отопительные установки становятся выгодными. В Центральной Европе, например, около 20% общей тепловой нагрузки традиционного дома и приблизительно 50% дома с низким энергопотреблением можно обеспечивать за счет современной активной солнечной системы, оснащенной системой аккумулирования тепла. Оставшееся тепло должно обеспечиваться за счет дополнительной энергоустановки. Чтобы увеличить долю энергии, получаемой от Солнца, нужно увеличивать объем аккумулятора тепла.В Швейцарии конструируют солнечные установки для частных домов с хорошо утепленными накопительными баками вместительностью 5-30м 3 (так называемые, системы Дженни), но стоят они дорого, а хранение горячей воды часто непрактично. Солнечный компонент системы Дженни превышает 50% и даже достигает 100%.Если бы вышеописанная система полностью работала за счет солнечной водонагревательной установки, то понадобился бы коллектор площадью 25 м 3 и бак-накопитель объемом 85 м 3 с теплоизоляцией толщиной 100 см. Увеличение теплоемкости аккумулятора энергии приводит к значительному улучшению практических возможностей аккумулирования.Хотя отопление индивидуальных жилых домов при помощи солнечной энергии является технически возможным, более экономически выгодным на сегодняшний день является вложение средств в теплоизоляцию для сокращения потребности в отоплении.

ПРОМЫШЛЕННОЕ ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОГО ТЕПЛА

Не только домашние хозяйства, но и предприятия используют солнечные водонагреватели для предварительного подогрева воды перед последующим применением других методов, чтобы довести ее до кипения или испарения. Меньшая зависимость от колеблющихся цен на энергоносители - еще один фактор, делающий солнечные системы привлекательным вложением денег. Обычно, установка солнечного водонагревателя влечет за собой быструю и существенную экономию энергии. В зависимости от необходимого объема горячей воды и местного климата, предприятие может сэкономить 40-80% стоимости электричества и других энергоносителей. Например, ежедневная потребность в горячей воде в 24-этажном офисном здании Кук Джей в Сеуле (Южная Корея), обеспечивается более чем на 85% за счет солнечной водонагревательной системы. Система работает с 1984 года. Она оказалась настолько эффективной, что перекрыла плановые показатели и обеспечивает, сверх того, от 10 до 20 % годовой потребности в отоплении.Существует несколько разных видов солнечных водонагревательных систем. Однако, количество горячей воды, которое обычно требуется предприятию, можно обеспечить только при помощи активной системы. Активная система обычно состоит из солнечных коллекторов, установленных на южном скате крыши (в Северном полушарии) и бака-накопителя, установленного возле солнечного коллектора. Когда на панель попадает достаточно солнечной радиации, специальный регулятор приводит в действие насос, который начинает прогонять жидкость - воду или антифриз - через солнечную панель. Жидкость принимает тепло от коллектора и передает его резервуару с водой, где она хранится, пока не понадобится. Если солнечная система не нагрела воду до нужной температуры, может использоваться дополнительный источник энергии. Тип и размер системы определяются по тому же принципу, что и размер солнечного коллектора для жилого дома (см. выше). Уход за промышленными солнечными системами зависит от типа и размеров системы, однако, благодаря ее простоте, ей требуется минимальный уход.Для многих видов коммерческой и промышленной деятельности самое большое преимущество солнечного коллектора - экономия топлива и энергии. Однако, нельзя забывать и о существенных экологических преимуществах. Выбросы в атмосферу таких загрязнителей, как сернистый газ, угарный газ и закись азота уменьшаются, когда владелец фирмы решает воспользоваться более чистым источником энергии - Солнцем.

СОЛНЕЧНОЕ ОХЛАЖДЕНИЕ

В мире возрастает спрос на энергию для кондиционирования и охлаждения. Это происходит не только из-за увеличивающейся потребности в комфорте в развитых странах, но и в связи с необходимостью хранения продовольствия и медицинских товаров в регионах с теплым климатом, особенно в странах третьего мира.Существуют три основных метода активного охлаждения. Прежде всего, использование электрических компрессоров, представляющих собой сегодня стандартное охлаждающее устройство в Европе. Во-вторых, использование абсорбционных кондиционеров, приводимых в действие с помощью тепловой энергии. Оба вида используются для кондиционирования воздуха, т.е. охлаждения воды до 5 оC, и замораживания ниже 0 оC. Есть и третья возможность для кондиционирования воздуха - охлаждение с использованием испарения. Все системы могут работать на солнечной энергии, их дополнительное преимущество - использование абсолютно безопасных рабочих жидкостей: простой воды, солевого раствора или аммиака. Возможные применения этой технологии - не только кондиционирование воздуха, но и охлаждение для хранения продовольствия и т.д.

СУШКА

Солнечный коллектор, который нагревает воздух, может служить дешевым источником тепла для сушки сельскохозяйственных культур - зерна, фруктов или овощей. Так как солнечные коллекторы с высокой эффективностью нагревают температуру воздуха в помещении на 5-10 оС (а сложные устройства - еще больше), они могут использоваться для кондиционирования воздуха на складах.Использование простых и дешевых солнечных коллекторов для подогрева воздуха при сушке урожая является перспективным для снижения огромных потерь урожая в развивающихся странах. Отсутствие адекватных условий хранения приводит к значительным потерям продовольствия. Хотя невозможно точно подсчитать масштабы потерь урожая в этих странах, некоторые источники оценивают их приблизительно в 50-60%. Чтобы избежать таких потерь, производители обычно продают урожай немедленно после сбора по низким ценам. Сокращение потерь благодаря сушке свежих плодов принесло бы большую пользу и производителям, и потребителям. В некоторых развивающихся странах для сохранения продовольствия широко используется метод сушки под открытым небом. Для этого продукт раскладывают на земле, камнях, на обочинах дорог или на крышах. Преимущество этого метода - в простоте и дешевизне. Однако качество конечного продукта низко из-за долгого времени высыхания, загрязнения, заражения насекомыми и порчи из-за перегрева. Кроме того, достижение достаточно низкого содержания влаги - дело трудное, и зачастую кончается порчей продукта при хранении. Введение солнечных сушилок поможет улучшить качество высушенных изделий и снизить убытки.

СОЛНЕЧНЫЕ ПЕЧИ

Успешное использование солнечных печей (плит) отмечалось в Европе и Индии уже в 18-м веке. Солнечные плиты и духовые шкафы поглощают солнечную энергию, превращая ее в тепло, которое накапливается внутри замкнутого пространства. Поглощенное тепло используется для варки, жарки и выпечки. Температура в солнечной печи может достигать 200 градусов Цельсия.Солнечные печи бывают разных форм и размеров. Приведем несколько примеров: духовой шкаф, печь-концентратор, рефлектор, солнечный пароварочный аппарат и т.д. При всем разнообразии моделей, все печи улавливают тепло и удерживают его в теплоизолированной камере. В большинстве моделей солнечный свет непосредственно воздействует на пищу.

ЯЩИЧНЫЕ СОЛНЕЧНЫЕ ПЕЧИ

Ящичные солнечные печи состоят из хорошо изолированной коробки,окрашенной внутри в черный цвет, в которую помещают черные кастрюли с едой. Коробка накрывается двухслойным "окном", которое пропускает солнечное излучение в ящик и удерживает тепло внутри. Вдобавок к нему крепится крышка с зеркалом на внутренней стороне, которая, будучи откинутой, усиливает падающее излучение, а в закрытом виде улучшает теплоизоляцию печи.Основные преимущества ящичных солнечных печей:
    Используют как прямое, так и рассеянное солнечное излучение. В них можно нагревать одновременно несколько кастрюль. Они легки, портативны и просты в обращении. Им не нужно поворачиваться вслед за Солнцем. Умеренные температуры делают помешивание не обязательным. Еда остается теплой целый день. Их легко изготовить и отремонтировать, используя местные материалы. Они относительно недороги (по сравнению с другими типами солнечных печей).
Присущи им, конечно, и некоторые недостатки:
    С их помощью можно готовить только в дневное время. Из-за умеренной температуры на приготовление пищи требуется продолжительное время. Стеклянная крышка приводит к значительным потерям тепла. Такие печи "не умеют" жарить.
Благодаря своим преимуществам, солнечные печи-ящики являются наиболее распространенным видом солнечных печей. Они бывают разных видов: промышленного производства, кустарные и самодельные; формой могут напоминать плоский чемоданчик или широкий низкий ящик. Бывают и стационарные печи, сделанные из глины, с горизонтально расположенной крышкой (в тропических и субтропических районах) или наклонной (в умеренном климате). Для семьи из пяти человек рекомендуются стандартные модели с площадью апертуры (входной площади) около 0,25 м2. В продаже встречаются и более крупные варианты печей -- 1 м2 и более.

ЗЕРКАЛЬНЫЕ ПЕЧИ (С ОТРАЖАТЕЛЕМ)

Простейшая зеркальная печь представляет собой параболический рефлектор и подставку для кастрюли, расположенную в фокусе печи. Если печь выставлена на Солнце, то солнечный свет отражается от всех рефлекторов в центральную точку (фокус), нагревая кастрюлю. Рефлектор может представлять собой параболоид, изготовленный, например, из листовой стали или отражающей фольги. Отражающая поверхность обычно изготовлена из полированного алюминия, зеркального металла или пластика, но может состоять также из множества маленьких плоских зеркал, прикрепленных к внутренней поверхности параболоида. В зависимости от нужного фокусного расстояния, рефлектор может иметь форму глубокой миски, в которую полностью погружается кастрюля с едой (короткое фокусное расстояние, посуда защищена от ветра) или мелкой тарелки, если кастрюля устанавливается в фокусной точке на определенном расстоянии от рефлектора.Все печи-отражатели используют только прямое солнечное излучение, и поэтому должны постоянно поворачиваться за Солнцем. Это усложняет их эксплуатацию, так как ставит пользователя в зависимость от погоды и регулирующего устройства.Преимущества зеркальных печей: Способность достигать высоких температур и, соответственно, быстрое приготовление пищи. Относительно недорогие модели. Некоторые из них могут служить также для выпечки.Перечисленным достоинствам сопутствуют и некоторые недостатки: В зависимости от фокусного расстояния, печь должна поворачиваться за Солнцем примерно каждые 15 минут. Используется только прямое излучение, а рассеянный солнечный свет теряется. Даже при небольшой облачности возможны большие потери тепла. Обращение с такой печью требует определенного навыка и понимания принципов ее действия. Отраженное рефлектором излучение очень ярко, слепит глаза, и может привести к получению ожога при контакте с фокальным пятном. Приготовление пищи ограничивается дневными часами. Повару приходится работать на жарком солнце (за исключением печей с фиксированной фокусировкой). Эффективность печи в большой степени зависит от изменяющейся силы и направления ветра. Блюдо, приготовленное днем, к вечеру остывает.Сложность обращения с этими печами в сочетании с тем фактом, что повар вынужден стоять на Солнце, является главной причиной их невысокой популярности. Но в Китае, где приготовление еды традиционно требует высокой температуры и мощности, они широко распространены.

СОЛНЕЧНАЯ ДИСТИЛЛЯЦИЯ

Во всем мире множество людей испытывает нехватку чистой воды. Из 2,4 млрд жителей развивающихся стран менее 500 млн имеют доступ к чистой питьевой воде, не говоря уже о дистиллированной. Решению этой проблемы может способствовать солнечная дистилляция. Солнечный дистиллятор - это простое устройство, которое превращает соленую или загрязненную воду в чистую, дистиллированную. Принцип солнечной дистилляции известен с давних пор. В четвертом веке до нашей эры Аристотель предложил метод испарения морской воды для производства питьевой. Однако солнечный дистиллятор был построен только в 1874 году, когда Дж. Хардинг и С. Вильсон построили его в Чили, чтобы дать чистую воду селению шахтеров. Этот дистиллятор площадью 4700 м2 производил 24 000 литров воды в день. В настоящее время такие установки большой производительности имеются в Австралии, Греции, Испании, Тунисе, на острове Св. Винсента в Карибском море. Установки поменьше имеются в широком употреблении в других странах.Практически любое морское побережье и пустынные местности можно превратить в обитаемые, используя солнечную энергию для подъема и очистки воды. Все этапы этого процесса - работа насоса, очистка и подача воды в дистиллятор - осуществляются при помощи солнечной энергии.

КАЧЕСТВО ВОДЫ

Полученная на такой установке вода отличается высоким качеством. Обычно она показывает лучший результат при тестировании на количество растворенных в воде веществ. Она также насыщена воздухом, так как конденсируется в дистилляторе в присутствии воздуха. Вода может поначалу показаться непривычной на вкус, так как в ней нет минеральных веществ, к которым привыкло большинство из нас. Тесты показывают, что дистилляция устранила все бактерии, а содержание пестицидов, удобрений и растворителей снижается на 75-99,5 %. Все это имеет огромное значение для стран, в которых люди по-прежнему гибнут от холеры и других инфекционных заболеваний.

СОЛНЕЧНЫЕ ТЕПЛОВЫЕ ЭЛЕКТРОСТАНЦИИ

В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.По способу производства тепла солнечные тепловые электростанции подразделяют на солнечные концентраторы (зеркала) и солнечные пруды.

СОЛНЕЧНЫЕ КОНЦЕНТРАТОРЫ

Такие электростанции концентрируют солнечную энергию при помощи линз и рефлекторов. Так как это тепло можно хранить, такие станции могут вырабатывать электричество по мере надобности, днем и ночью, в любую погоду.Большие зеркала - с точечным либо линейным фокусом - концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину. Фирма "Luz Corp." установила огромные поля таких зеркал в калифорнийской пустыне. Они производят 354 МВт электроэнергии. Эти системы могут превращать солнечную энергию в электричество с КПД около 15 %.Технологии получения солнечной тепловой электроэнергии, основанные на концентрации солнечного света, находятся на разных этапах разработки. Параболические концентраторы уже сегодня применяются в промышленном масштабе: в пустыне Мохаве (штат Калифорния) мощность установки составляет 354 МВт. Солнечные электростанции башенного типа проходят фазу демонстрационных проектов. Пилотный проект под названием "Solar Two" мощностью 10 МВт проходит испытания в г. Барстоу (США). Системы тарельчатого типа проходят стадию демонстрационных проектов. Несколько проектов находятся в конструкторской разработке. В г. Голден (США) работает 25-киловаттная станция-прототип. Солнечные тепловые электростанции отличает ряд особенностей, которые делают их весьма привлекательными технологиями на расширяющемся мировом рынке возобновляемой энергии.Тепловые солнечные электростанции за последние несколько десятилетий преодолели трудный путь. Продолжение проектно-конструкторских работ должно сделать эти системы более конкурентоспособными по сравнению с использованием ископаемого топлива, увеличить их надежность и создать серьезную альтернативу в условиях всевозрастающего спроса на электроэнергию.Солнечные прудыНи фокусирующие зеркала, ни солнечные фотоэлементы (см. ниже) не могут вырабатывать энергию в ночное время. Для этой цели солнечную энергию, накопленную днем, нужно сохранять в теплоаккумулирующих баках. Этот процесс естественным образом происходит в так называемых солнечных прудах.Солнечные пруды имеют высокую концентрацию соли в придонных слоях воды, неконвективный средний слой воды, в котором концентрация соли возрастает с глубиной и конвекционный слой с низкой концентрацией соли - на поверхности. Солнечный свет падает на поверхность пруда, и тепло удерживается в нижних слоях воды благодаря высокой концентрации соли. Вода высокой солености, нагретая поглощенной дном пруда солнечной энергией, не может подняться из-за своей высокой плотности. Она остается у дна пруда, постепенно нагреваясь, пока почти не закипает (в то время как верхние слои воды остаются относительно холодными). Горячий придонный"рассол" используется днем или ночью в качестве источника тепла, благодаря которому особая турбина с органическим теплоносителем может вырабатывать электричество. Средний слой солнечного пруда выступает в качестве теплоизоляции, препятствуя конвекции и потерям тепла со дна на поверхность. Разница температур на дне и на поверхности воды пруда достаточна для того, чтобы привести в действие генератор. Теплоноситель, пропущенный по трубам через нижний слой воды, подается далее в замкнутую систему Рэнкина, в которой вращается турбина для производства электричества.1. Высокая концентрация соли2. Средний слой.3. Низкая концентрация соли4. Холодная вода "в" и горячая вода "из"

ФОТОЭЛЕКТРИЧЕСКИЕ ЭЛЕМЕНТЫ

Устройства для прямого преобразования световой или солнечной энергии в электроэнергию называются фотоэлементами (по-английски Photovoltaics, от греческого photos - свет и названия единицы электродвижущей силы - вольт). Преобразование солнечного света в электричество происходит в фотоэлементах, изготовленных из полупроводникового материала, например, кремния, которые под воздействием солнечного света вырабатывают электрический ток. Соединяя фотоэлементы в модули, а те, в свою очередь, друг с другом, можно строить крупные фотоэлектрические станции. Крупнейшая такая станция на сегодняшний день - это 5-мегаваттная установка Карриса Плейн в американском штате Калифорния. КПД фотоэлектрических установок в настоящее время составляет около 10%, однако отдельные фотоэлементы могут достигать эффективности 20% и более.

СОЛНЕЧНЫЕ МОДУЛИ

Солнечный модуль - это батарея взаимосвязанных солнечных элементов, заключенных под стеклянной крышкой. Чем интенсивнее свет, падающий на фотоэлементы и чем больше их площадь, тем больше вырабатывается электричества и тем больше сила тока. Модули классифицируются по пиковой мощности в ваттах (Втп). Ватт - единица измерения мощности. Один пиковый ватт - техническая характеристика, которая указывает на значение мощности установки в определенных условиях, т.е. когда солнечное излучение в 1 кВт/м2 падает на элемент при температуре 25 оC. Такая интенсивность достигается при хороших погодных условиях и Солнце в зените. Чтобы выработать один пиковый ватт, нужен один элемент размером 10 x 10 см. Более крупные модули, площадью 1 м x 40 см, вырабатывают около 40-50 Втп. Однако солнечная освещенность редко достигает величины 1 кВт/м2. Более того, на солнце модуль нагревается значительно выше номинальной температуры. Оба эти фактора снижают производительность модуля. В типичных условиях средняя производительность составляет около 6 Вт·ч в день и 2000 Вт·ч в год на 1 Втп. 5 ватт-час - это количество энергии, потребляемое 50-ваттной лампочкой в течение 6 минут (50 Вт x 0,1 ч = 5 Вт·ч) или портативным радиоприемником в течение часа (5 Вт x 1 ч = 5 Вт·ч).

ПРОМЫШЛЕННЫЕ ФОТОЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ

Уже несколько лет небольшие фотоэлектрические системы применяются в коммунальном электро-, газо- и водоснабжении, доказав свою экономичность. В большинстве своем они имеют мощность до 1 кВт и включают в себя аккумуляторы для накопления энергии. Они выполняют множество функций: от питания сигнальных огней на опорах ЛЭП для оповещения самолетов до контроля качества воздуха. Они продемонстрировали надежность и долговечность в коммунальном хозяйстве и готовят почву для будущего внедрения более мощных систем.

ЗАКЛЮЧЕНИЕ

В средней полосе гелиосистема позволяет частично обеспечить потребности отопления. Опыт эксплуатации показывает, что сезонная экономия топлива за счет использования солнечной энергии достигает 60%Солнечные установки практически не требуют эксплуатационных расходов, не нуждаются в ремонте и требуют затрат лишь на их сооружение и поддержание в чистоте. Работать они могут бесконечно.Постоянное уменьшение стоимости солнечного ватта позволит гелиоустановкам конкурировать с другими автономными источниками энергии, например, с дизельными электростанциями.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Лаврус В.С. Источники энергии / Серия "Информационное Издание", Выпуск 3 "Наука и Техника", 1997

Как на Земле развивается использовании энергии Солнца?

Небесное светило дарит нам бесплатно огромное количество энергии. Всего за 15 минут звезда отдаёт нашей планете объём энергии, которого человечеству хватит для обеспечения электричеством на один год. Качество и эффективность солнечных батарей постоянно совершенствуются и становятся дешевле. Однако до массового использования энергии солнца пока далеко. Есть ряд проблем, из которых особенно остро стоит эффективность оборудования для преобразования солнечного излучения. В основном это касается фотоэлектрических элементов, эффективность которых лежит в интервале 12─17 процентов. Но ещё в середине прошлого столетия она составляла около 1%. Так, что прогресс постепенно идёт, хотя и не быстро. Поэтому в будущем энергия солнца должна занять достойное место в мировой энергетике. В этом материале речь пойдёт об использовании солнечной энергии в хозяйственной деятельности на Земле. Поговорим о проблемах и перспективах, а также приведём примеры оборудования.

Солнце служит первоначальным источником всех энергетических процессов на Земле. Звезда отправляет в сторону нашей планеты 20 миллионов эксаджоулей за год. Поскольку Земля круглой формы на неё попадает примерно 25%. Из этой энергии примерно 70 процентов поглощается атмосферой, отражается и уходит на прочие потери. На поверхность Земли попадает 1,54 миллиона эксаджоулей в год. Эта цифра в несколько тысяч раз больше, чем энергопотребление на планете. Кроме того, эта величина в 5 раз превышает весь энергетический потенциал углеводородного топлива, накопленных на Земле за миллионы лет.

Большая доля этой энергии на поверхности планеты превращается в тепло. Оно нагревает землю и воду, а от них греется воздух. Тепло от Солнца определяет океанские течения, круговорот воды в природе, воздушные потоки и т. п. Тепло постепенно излучается в космос и теряется там. В экосистеме планеты энергия проходит длинный и сложный путь преобразования, но от полученного её количества используется лишь малая часть. В результате экосистема работает, не загрязняет окружающую среду и использует малую часть энергии, доходящей до Земли. Отсюда можно заключить, что постоянный поток энергии Солнца на Землю постоянен и поступает в избыточном количестве.

Растения на Земле потребляют всего лишь 0,5 процента энергии, доходящей до Земли. Поэтому, даже если человечество будет существовать только за счёт энергии солнца, они будут потреблять лишь малую её долю. Энергии Солнца на Земле вполне достаточно для энергетических потребностей цивилизации. При этом мы возьмём лишь небольшую часть энергии, и это никак не скажется на биосфере. Солнце отправляет на Землю огромное количество энергии. За несколько дней её количество превышает энергетический потенциал всех разведанных запасов топлива. Даже треть от этого количества, которое попадает на Землю, в тысячи раз превышает все традиционные источники энергии.

Солнечная энергия экологически «чистая». Конечно, ядерные реакции, проходящие на Солнце, порождают радиоактивное загрязнение. Но оно находится на безопасном расстоянии от Земли. А вот сжигание углеводородов и атомные электростанции создают загрязнения на Земле. Кроме того, энергия Солнца постоянна и присутствует в избыточном количестве.



Можно сказать, что энергия солнца вечна. Некоторые специалисты говорят, что звезда потухнет через несколько миллиардов лет. Но какое значение это имеет для нас? Ведь люди существуют примерно 3 миллиона лет. Так, что использование солнечной энергии не ограничено во времени. Благодаря энергии, которую отдаёт Солнце, на Земле происходят 2 круговорота веществ. Один из них большой (ещё называемый геологическим). Он проявляется в круговороте атмосферы и водных масс. А также малый биологический (ещё называемый биотическим) круговорот, который работает на базе большого. Он заключается в циклическом перераспределении энергии и веществ в границах экологических систем. Эти круговороты между собой связаны и являются единым процессом.

Какие есть проблемы при использовании солнечной энергии?

Казалось бы, всё прекрасно и нужно переходить на использование энергии солнца. Оказывается, есть ряд проблем. Каких же? Основная проблема заключается в том, что поступающая энергия сильно рассеивается. На один квадратный метр попадает примерно 100─200 ватт. Точное количество зависит от расположения этого места на Земле. Кроме того, Солнце светит днём, и мощность в это время достигает 400-900 ватт на квадратный метр. А ночью энергии не поступает, а пасмурную погоду поступает значительно меньше. То есть, в какие-то моменты нужно собирать весь этот энергетический поток и накапливать. А когда солнечный свет на землю не падает, использовать накопленную энергию.



Собирают энергию солнца разными способами. Естественным считается сбор тепла для нагрева теплоносителя, а затем его использование в системе отопления дома или в подаче горячей воды. И также распространённый способ преобразования солнечной энергии – это получение электроэнергии. Все эти установки выпускаются как фабрично, так и самостоятельно своими руками. Некоторые умельцы делают обогреватели в обычном окне квартиры или дома. Получается дополнительный обогрев помещения. А также распространены коллекторы и гелиосистемы для выработки электричества в частных домах. Однако применение тепловых коллекторов ограничивается климатическими условиями. А солнечные панели для преобразования солнечной энергии в электричество пока имеют низкий КПД.

Но в целом гелиосистемы являются очень перспективной сферой энергетики. Стоит ещё немного подрасти в цене энергоносителям, и они станут очень востребованы. На Земле много районов, где практически постоянно светит солнце. Это степи, пустыни. При установке там солнечных электростанций и получения электроэнергии можно обустроить эту землю и сделать её плодородной. Энергия будет расходоваться на подвод воды и нужды населения.

Экскурс в прошлое

Когда-то в глубокой древности язычники воспринимали Солнце в качестве божества. Конечно, в те времени использование солнечной энергии отсутствовало, как таковое. Это было нечто магическое. Но первые попытки использования солнечной энергии предпринимались уже довольно давно. Если не брать во внимание легенду о сожжённом с помощью концентрированной солнечной энергии флоте в Древней Греции, то настоящее использование энергии Солнца началось в XIX─XX веках. В 1839 году учёный Беккерель открыл фотогальванический эффект. Спустя несколько десятилетий Чарльз Фриттс разработал солнечный модуль, основой которого стал селен, покрытый золотом. Первые солнечные панели, которые были выпущены в XX веке имели КПД не более 1%. Но на тот момент это было настоящим прорывом. В результате для учёных открылись новые горизонты для исследований и новых открытий.


Альберт Эйнштейн также внёс значительный вклад в развитие солнечной энергетики. Конечно, среди его достижений чаще всего упоминают теорию относительности. Но свою Нобелевскую премию он получил за изучение явления внешнего фотоэффекта. Технология производства солнечных панелей для получения электричества постоянно совершенствуется. Поэтому есть надежда, что скоро мы станем свидетелями новых потрясающих открытий в этой области.

Сферы использования солнечной энергии

Область использования энергии солнца довольно широкая и постоянно расширяется. Здесь можно упомянуть даже такую простую вещь, как летний душ баком наверху. Он нагревается от солнца и можно мыться. Использование гелиосистем для частных домов ещё совсем недавно казалось фантастикой, а сегодня стали реальностью. Сейчас выпускается много солнечных коллекторов для обогрева бытовых и производственных помещений. Уже есть модели, которые способны работать при отрицательных температурах. Кроме того, полно всевозможных мобильных для зарядки мобильных гаджетов, калькуляторов, и другой техники с питанием от фотоэлектрических панелей.

Энергия солнца на сегодняшний день используется в таких сферах народного хозяйства, как:

  • Энергоснабжение частных домов, пансионатов, санаториев;
  • Энергоснабжение населённых пунктов, находящихся вдали от городской инфраструктуры;
  • Сельское хозяйство;
  • Космонавтика;
  • Экотуризм;
  • Уличное освещение, декоративная подсветка на дачных участках;
  • Жилищно-коммунальное хозяйство;
  • Зарядные устройства.



Несколько ранее энергия солнца и связанные с этим технологии применялись только в космонавтике и военной сфере. С помощью фотоэлементов обеспечивалось снабжение энергией спутников, различных мобильных станций и тому подобное. Но постепенно солнечная энергетика стала использоваться в быту и на производстве. Сегодня часто можно встретить гелиосистемы в южных регионах. Чаще всего они используются в частном секторе, а также в мелком туристическом бизнесе (санатории, дома отдыха и т. п.).



Публикации по теме