Виэ и побочные экологические эффекты. Нетрадиционная экология Плохое воздействие от возобновляемых источников энергии

Приложение 1. Экологические проблемы альтернативной энергетики

д.х.н., проф. МГУ, Лисичкин Г.В.

(В кн. Материалы конференции «Основы экологической безопасности» /Под ред. Г.А. Богдановского, Н.А. Галактионовой. «Научные труды МНЭПУ». Вып. 4. Серия: «Реймерсовские чтения». – М.: Изд-во МНЭПУ, 2000. – с.37 – 44.)

Загрязнение природной среды при производстве электрической энергии в массовом сознании связано в первую очередь с работой ядерных электростанций, а также с использованием в качестве энергоносителей твердых горючих ископаемых. Для лиц, отягощенных хотя бы элементарным естественно-научным образованием, ясно, что и такие энергоносители, как нефть и природный газ создают весьма существенную нагрузку на среду обитания. Однако наш опыт показывает, что даже многие специалисты-экологи убеждены в абсолютной безопасности для природы альтернативных (возобновляемых) источников энергии.

Настоящая статья посвящена краткому анализу экологических проблем, возникающих при крупномасштабном производстве электроэнергии за счет возобновляемых источников энергии.

Прежде чем рассматривать альтернативные источники энергии, примем к сведению очень важное обстоятельство: нас интересует возможность использования этих источников в больших масштабах, мы пытаемся оценить перспективы замены традиционных энергоносителей – в первую очередь нефти – в связи с их грядущим исчерпанием. Если в наши дни суммарная доля альтернативных энергоносителей в мировом производстве энергии не достигает и одного процента, то в предвидимом будущем можно ожидать ситуации, когда примерно четверть всей вырабатываемой электроэнергии будет получаться за счет возобновляемых источников. Таким образом, нас интересуют экологические последствия использования энергии Солнца, ветра, тепла Земли и т.п. не в условиях испытания единичных установок и опытно-промышленных разработок, а последствия применения таких энергоносителей, когда их доля в энергетическом балансе крупных государств достигнет десятков процентов.

Гидроэнергия

Рассматривая возобновляемые источники энергии, следует начать с гидроэнергетики, которая уже более века не является альтернативным источником электроэнергии. Известно, что использование энергии рек во многих странах, в том числе и в России, достигло впечатляющего уровня, но рост доли гидроэнергии в развитых странах сильно замедлился. Существенно, что его сдерживают не столько дороговизна ГЭС, сколько неблагоприятные экологические последствия. Крупные гидростанции, построенные на равнинных реках, привели к возникновению громадных мелководных водохранилищ. Оказались затопленными огромные пространства сельскохозяйственных угодий, сенокосных лугов. Сильно замедлилось течение воды, она прогрелась и зацвела. Почти прекратилась миграция проходных рыб. Все эти печальные последствия можно видеть на примере Волги, энергетические ресурсы которой практически исчерпаны, а река стала цепью слабопроточных водохранилищ.

Не многим лучше обстоит дело с возведением ГЭС в горах. Там площадь водохранилищ меньше, но непредсказуемо воздействие большой массы воды на тектонику прилегающих горных массивов. Кроме того, в горной местности весьма активно идут процессы заиливания водохранилищ.

Итак уже на примере гидроэнергетики ясно, что сама по себе «возобновляемость» энергоносителя отнюдь не является гарантией его экологической чистоты.

Энергия ветра

Понятно, что одна ветроустановка безобидна. Но как только мы захотим с помощью энергии ветра выработать, скажем, 20% необходимой нашей стране электроэнергии (это примерно 200 млрд. кВт ч), окажется, что для строительства ветроэлектростанций потребуются весьма значительные площади земли; для изготовления десятков тысяч ветряных колес (диаметр примерно 100 м) и башен для них придется резко увеличить производство алюминия или стеклопластика, а это весьма грязные производства; при мощности одной установки 250 кВт возникает шум силой 50-80 децибел; ветряные колеса генерируют опасные инфразвуковые колебания.

Но главная неприятность, по-видимому, состоит в том, что из-за крупномасштабного использования энергии ветра он будет рассеиваться, изменится роза ветров и, следовательно, нарушится климатическое равновесие, перенос влаги и тепла не только в районе, где построена ветроэлектростанция, но и далеко за его пределами.

Интересно, что соображения об экологической опасности утилизации ветроэнергии уже нельзя считать чисто умозрительными. Власти Дании, где уже 5,5 % от всего потребления электроэнергии поставляют ветроэлектростанции, поставили задачу удвоить эту долю. Однако они натолкнулись на мощное сопротивление общественности и «зеленых». Дело в том, что из-за дефицита свободной территории строительство пятисот ветроустановок (пять групп по сто штук в каждой) планируется на морском мелководье. В этом случае ликвидируются места традиционного обитания птиц, создается невыносимый шум и возникают помехи в распространении радиоволн, интенсивно мешающие работе телевизионных станций.

Солнечная энергия

Различные схемы преобразования солнечной энергии в электрическую также сопряжены со значительным воздействием вредных факторов на природу. (Речь по-прежнему идет о широкомасштабном производстве энергии, о значительном вкладе солнечной энергии в энергетический баланс планеты.).

Для строительства солнечных станций потребуется отчуждение огромных площадей, не менее чем на 3 порядка больших, нежели для тепловых электростанций той же мощности. Но проблема заключается еще и в том, что любой способ преобразования солнечной энергии отличается высокой материалоемкостью, причем для изготовления оборудования требуется либо уже упомянутый экологически опасный в производстве алюминий (башни, баки, конструкции отражателей), либо еще более опасный кремний (материал для солнечных батарей). Напомним, что технология производства высокочистого кремния включает стадии его восстановления магнием из кремнезема и дальнейший синтез через трихлорсилан. Этот и иные способы получения кремния «солнечной» чистоты при крупнотоннажном производстве серьезно загрязнят окружающую среду, прежде всего – атмосферу.

Наконец, главная экологическая опавсность состоит в том, что при отборе солнечного тепла будет происходить похолодание, пропорциональное количеству преобразованной солнечной энергии. Этим эффектом вполне можно пренебречь при строительстве маломощных домашних устройств, но не при проектировании крупных солнечных станций, которые должны вносить заметный вклад в энергетический баланс страны и занимать сотни квадратных километров. Как отметил академик П.Л.Капица, применение фотопреобразователей с высоким КПД (лишь такие выгодны экономически) может привести к понижению температуры, из-за которого начнется конденсация водяного пара в атмосфере и соответственно прекратят работу фотоприемники. Если ограничить КПД пятнадцатью процентами (уровень лучших современных преобразователей), то туман не будет появляться, но тогда под солнечные станции придется отчуждать еще более гигантские территории. Можно думать, что климат на этих территориях станет прохладнее.

Тепло Земли

Не меньшие, а возможно, и большие трудности экологического характера возникают при проектировании крупных геотермальных электростанций. Работа ГеоТЭС сопряжена с необходимостью сбрасывать горячую и более или менее минерализованную воду. Сброс такой воды чреват значительной опасностью для гидробионтов. Из-за повышения температуры уменьшается концентрация растворенного в воде кислорода – его уже недостаточно для многих рыб (форель, например, живет только в холодной воде), а минеральные примеси угнетают водные организмы. Отбор из скважин пароводяной смеси во многих случаях сопровождается выбросами токсичных газов; расширяющийся при выходе на поверхность пар вызывает сильный шум.

Из перечисленных факторов наиболее неприятна необходимость сбрасывать горячую минерализованную воду. Закон о недрах запрещает сброс такой воды в реки и рекомендует закачивать ее через специально пробуренные скважины обратно в земные недра. Но последствия этого приема при крупномасштабном производстве энергии прогнозировать очень трудно. Микроземлетрясения при закачивании воды уже зафиксированы.

Влияние ГеоТЭС на природу легко наблюдать на примере Паужетской станции на Южной Камчатке: в радиусе двух-трех километров от станции торчат голые, без коры и листьев, стволы каменной камчатской березы, далеко слышен неумолчный рев выходящего на поверхность пара. При этом мощность станции всего 11 мВт. Для сравнения отметим, что мощность главных турбин атомного ледокола «Арктика» – 55 мВт.

Панорама строительства и атмосферный воздух в районе Мутновской ГеоТЭС (70 км от Петропавловска-Камчатского) также оставляют довольно тяжелое впечатление.

Энергия морских приливов

Использование энергии морских приливов также вызывает неблагоприятные экологические последствия: крупная приливная гидроэлектростанция представляет собой гигантскую плотину, затрудняющую водообмен между морем и морским заливом или устьем реки. Плотина препятствует естественной миграции гидробионтов, нарушает установившиеся за миллионы лет связи. Это, конечно, неприятно, но не катастрофично. Однако есть и более серьезные опасения: нетрудно рассчитать, что строительство группы приливно-отливных электростанций большой мощности (сотни гигаватт) – а именно такие нужны для компенсации дефицита горючих ископаемых – на доли секунды замедлит вращение Земли. Последствия этого трудно даже предположить.

Водородная энергетика

До сих пор мы рассматривали так называемые первичные энергоносители, но есть еще и вторичные, важнейший из которых водород. Идея его использования проста: направим первичную энергию на производство водорода из воды, а дальше будем использовать водород как экологически чистое топливо – при его окислении образуется только вода.

Сам по себе водород действительно относительно чист в экологическом плане. Надо лишь учесть, что при его горении на воздухе развиваются температуры, достаточные для окисления азота. Поэтому помимо воды среди продуктов горения будет некоторое количество оксидов азота.

Основные проблемы возникают при получении водорода. Добыча водорода из его природных соединений в соответствии с законом сохранения энергии требует столько же энергии (в реальных условиях несколько больше), сколько мы получим при окислении водорода. Следовательно мы должны затратить эквивалентное количество первичной энергии, которая, как мы убедились, не может быть экологически чистой. Значит, мы попросту переносим загрязнения из одного региона (где водород потребляют) в другой (где его получают).

Низкая плотность, взрывоопасность, высокая диффузионная подвижность водорода (под давлением и при нагревании он способен просачиваться через металл) требуют для работы с ним новых материалов и технологий, которые вряд ли будут экологически чистыми. Пока трудно даже представить себе весь комплекс природоохранных проблем, которые возникнут при производстве специальных сплавов для трубопроводов, при строительстве и последующей эксплуатации водородопровода длиной 2000 км.

Еще одна сложная проблема – это экологический аспект аккумулирования водорода. Понятно, что расход водорода как и любого другого энергоносителя будет неравномерным. Следовательно необходимо заранее проектировать устройства для аккумулирования водорода. На сегодняшний день лучшими экономическими и техническими характеристиками обладают интерметаллические аккумуляторы, представляющие собой трехкомпонентные сплавы на основе редкоземельных элементов. Емкость их по водороду составляет 2 %-масс. Ясно, что крупномасштабное применение водорода приведет к многократному увеличению производства редкоземельных металлов, что отнюдь не безопасно с позиций охраны среды обитания.

Аналогичным образом можно рассмотреть любые другие альтернативные источники энергии, существующие или только намечаемые: управляемый термоядерный синтез, энергия растительной биомассы, энергия малых рек, энергия низкопотенциального тепла и т.д. и т.п. Энергетика, основанная на любых источниках, независимо от того возобновляемые они или нет, не может быть экологически чистой, если масштаб производства энергии велик. Разумеется, экологическая опасность разных видов энергоносителей различна, но она есть всегда. Экологически чистой энергии не бывает.

Правило шлейфа

Для оценки экологического ущерба, наносимого конкретным видом энергетики, совершенно недостаточно учитывать только чистоту энергоносителя. Необходимо брать в расчет воздействие на среду сооружений, машин и устройств для отбора и передачи энергии, а также технологий производства соответствующих материалов и аппаратуры. Широкое использование любого нового вида энергии требует создания новой подотрасли промышленности, включающей добычу сырья и его переработку, изготовление оборудования, утилизацию морально или физически устаревшего оборудования. Ясно, что новая подотрасль станет дополнительным источником загрязнения среды. Получается, что использование нового, пусть даже почти чистого энергоносителя влечет за собой шлейф заведомо нечистых технологий.

Электроэнергия на автомобильном транспорте

С электромобилями связан один чрезвычайно живучий миф: «Переход автомобильного транспорта на электрическую тягу обеспечит чистоту атмосферы». В действительности если значительную часть автомобилей с двигателями внутреннего сгорания заменить на электромобили с аккумуляторами (а это единственный на сегодня реальный вариант автомобильных источников энергии), произойдет экологическая катастрофа. При массовой эксплуатации таких электромобилей выбросы двигателей будут заменены слегка уменьшенными выбросами на электростанциях: ведь аккумуляторы надо постоянно заряжать, значит, надо пропорционально увеличить мощность электростанций, т.е. имеет место перенос экологических проблем из одного региона в другой.

Но главное – аккумуляторы. Кислотные свинцовые или щелочные никель-кадмиевые источники тока – а нам понадобится производить дополнительно сотни миллионов аккумуляторов – потребуют резко увеличить производство этих токсичных металлов. Придется налаживать и систему утилизации. Учитывая, что каждый двадцатый российский шофер (это в лучшем случае) будет выбрасывать старые аккумуляторы в придорожную канаву, нетрудно представить и даже довольно точно оценить масштабы экологического бедствия, которое обрушится на наши головы. Следовательно, в качестве источника электроэнергии нужны какие-то другие, не производимые сегодня, автомобильные источники тока, например топливные элементы или фотопреобразователи. Но здесь вступает в силу правило шлейфа.

Заключение

Подводя итог проведенному в статье анализу, необходимо сделать несколько важных выводов.

1. Современная промышленная цивилизация неминуемо влечет за собой загрязнение среды обитания. Обеспечение растущего населения Земли энергией потребует увеличение ее производства в течение трех-четырех ближайших десятилетий примерно вдвое. С учетом невозможности создания полностью безотходной промышленности, интенсивного сельского хозяйства, энергетики, транспорта, быта, следует решать проблему минимизации загрязнений, понимая, что создать «чистую» цивилизацию в обозримый период времени не удастся.

2. Для реализации полностью безотходной цивилизации необходимо связать воедино все производственные процессы на Земле, замкнуть их в одну гигантскую материально-энергетическую систему. Решение этой задачи принципиально возможно, но оно окажется под силу только нашим далеким потомкам.

3. Широкое использование возобновляемых источников энергии в будущем неизбежно, экологическая опасность каждого из них индивидуальна, необходима постановка научных исследований, направленных на изучение влияния нетрадиционных энергоносителей на среду обитания.

4. Наиболее вероятно, что основным энергоносителем следующего столетия станет природный газ, наступит так называемая газовая пауза, которая может продлиться очень долго, если учесть, что запасы метана в виде газовых гидратов как минимум в 10 раз превышают запасы всех вместе взятых горючих ископаемых на нашей планете. За период газовой паузы будет создан глобальный энергетический комплекс, отвечающий требованиям экологии и экономики, включающий возобновляемые энергоресурсы и управляемый термоядерный синтез.

ЛИТЕРАТУРА

1. Лисичкин Г.В. Химия и жизнь, 1999, №2, с.22.

2. Новая энергетическая политика России. М., Энергоатомиздат, 1995, 512 с.

3. Дядин Ю.А., Гущин А.Л. Соросовский образовательный журнал. 1998, №3, с.55.

4. Путвинский С.В. Усп.физ.наук. 1998, т.168, №11, с.1235.

Предыдущая

Возобновляемые источники энергии

В понятие возобновляемые источники энергии (ВИЭ) включаются следующие формы энергии: солнечная, геотермальная, ветровая, энергия морских волн, течений, приливов и океана, энергия биомассы, гидроэнергия, низкопотенциальная тепловая энергия и другие "новые" виды возобновляемой энергии.

Принято условно разделять ВИЭ на две группы:

Традиционные : гидравлическая энергия, преобразуемая в используемый вид энергии ГЭС мощностью более 30 МВт; энергия биомассы, используемая для получения тепла традиционными способами сжигания (дрова, торф и некоторые другие виды печного топлива); геотермальная энергия.
Нетрадиционные : солнечная, ветровая, энергия морских волн, течений, приливов и океана, гидравлическая энергия, преобразуемая в используемый вид энергии малыми и микроГЭС, энергия биомассы, не используемая для получения тепла традиционными методами, низкопотенциальная тепловая энергия и другие "новые" виды возобновляемой энергии.
Перспективы возобновляемой энергетики

В последние годы тенденция роста использования возобновляемых источников энергии (ВИЭ) становится достаточно явной. Проблемы развития ВИЭ обсуждаются на самом высоком уровне. Так на встрече на высшем уровне на Окинаве (июнь 2000) главы восьми государств, в том числе Президент России В. В. Путин, обсудили глобальные проблемы развития мирового сообщества и среди них проблему роли и места возобновляемых источников энергии. Было принято решение образовать рабочую группу для выработки рекомендаций по значительному развертыванию рынков возобновляемой энергетики. Практически во всех развитых странах формируются и реализуются программы развития ВИЭ.
Чем же вызван такой интерес к этой проблеме?

Говоря об этой тенденции, следует выделить один принципиально новый момент. До последнего времени в развитии энергетики прослеживалась четкая закономерность: развитие получали те направления энергетики, которые обеспечивали достаточно быстрый прямой экономический эффект. Связанные с этими направлениями социальные и экологические последствия рассматривались лишь как сопутствующие, и их роль в принятии решений была незначительной.

При таком подходе ВИЭ рассматривались лишь как энергоресурсы будущего, когда будут исчерпаны традиционные источники энергии или когда их добыча станет чрезвычайно дорогой и трудоемкой. Так как это будущее представлялось достаточно отдаленным (да и сейчас говорить серьезно об истощении потенциала традиционных энергоресурсов можно лишь с большой натяжкой), то использование ВИЭ представлялось достаточно интересной, но в современных условиях скорее экзотической, чем практической, задачей.

Ситуацию резко изменило осознание человечеством экологических пределов роста. Быстрый экспоненциальный рост негативных антропогенных воздействий на окружающую среду ведет к существенному ухудшению среды обитания человека. Поддержание этой среды в нормальном состоянии и возможность ее к самосохранению, становится одной из приоритетных целей жизнедеятельности общества. В этих условиях прежние, только узко экономические оценки различных направлений техники, технологии, хозяйствования, становятся явно недостаточными, ибо они не учитывают социальные и экологические аспекты.

Импульсом для интенсивного развития ВИЭ впервые стали не перспективные экономические выкладки, а общественный нажим, основанный на экологических требованиях. Мнение о том, что использование ВИЭ существенно улучшит экологическую обстановку в мире, - вот основа этого нажима.

Экономический потенциал возобновляемых источников энергии в мире в настоящее время оценивается в 20 млрд. т.у.т. в год, что в два раза превышает объем годовой добычи всех видов ископаемого топлива. И это обстоятельство указывает путь развития энергетики ближайшего будущего.

Основное преимущество возобновляемых источников энергии - неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Эти качества и послужили причиной бурного развития возобновляемой энергетики за рубежом и весьма оптимистических прогнозов их развития в ближайшем десятилетии.

По оценке Американского общества инженеров-электриков, если в 1980 г. доля производимой электроэнергии на ВИЭ в мире составляла 1%, то к 2005 г. она достигнет 5%, к 2020 - 13% и к 2060 г. - 33%. По данным Министерства энергетики США, в этой стране к 2020 г. объем производства электроэнергии на базе ВИЭ может возрасти с 11 до 22%. В странах Европейского Союза планируется увеличение доли использования для производства тепловой и электрической энергии с 6% (1996) до 12% (2010). Исходная ситуация в странах ЕС различна. И если в Дании доля использования ВИЭ в 2000 г. достигла 10%, то Нидерланды планируют увеличить долю ВИЭ с 3% в 2000 г. до 10% в 2020 г. Основной результат в общей картине определяет Германия, в которой планируется увеличить долю ВИЭ с 5,9% в 2000 г. до 12% в 2010 г. в основном за счет энергии ветра, солнца и биомассы.

Можно выделить пять основных причин, обусловивших развитие ВИЭ:

· обеспечение энергетической безопасности;
· сохранение окружающей среды и обеспечение экологической безопасности;
· завоевание мировых рынков ВИЭ, особенно в развивающихся странах;
· сохранение запасов собственных энергоресурсов для будущих поколений;
· увеличение потребления сырья для неэнергетического использования топлива.

Масштабы роста использования ВИЭ в мире на ближайшие 10 лет представлены в табл. 1. Чтобы ощутить масштаб цифр, укажем, что электрическая мощность электростанций на возобновляемых источниках энергии (без крупных ГЭС) составит 380-390 ГВт, что превышает мощность всех электростанций России (215 ГВт) в 1,8 раза.

Таблица 1

Вид оборудования или технологии

2000 г.

2010 г.

Фотоэлектричество

0,938 (0,26)

Ветроустановки, подключенные к сети

Малые ГЭС

Электростанции на биомассе

Солнечные термодинамические станции

Геотермальные станции

380,9 - 392,45

Геотермальные тепловые станции и установки, ГВт

Солнечные коллекторы и системы,


На территории России сосредоточено 45% мировых запасов природного газа, 13% - нефти, 23% - угля, 14% - урана. Такие запасы топливно-энергетических ресурсов могут обеспечить потребности страны в тепловой и электрической энергии в течение сотен лет. Однако фактическое их использование обусловлено существенными трудностями и опасностями, не обеспечивает потребности многих регионов в энергии, связано с безвозвратными потерями топливно-энергетических ресурсов (до 50%), угрожает экологической катастрофой в местах добычи и производства топливно-энергетических ресурсов. Природа может не выдержать такого испытания. Около 22-25 млн. человек проживают в районах автономного энергоснабжения или ненадежного централизованного энергоснабжения, занимающих более 70% территории России.

Экономический потенциал ВИЭ на территории России, выраженный в тоннах условного топлива (т.у.т.), составляет по видам источников: энергия Солнца - 12,5 млн., энергия ветра - 10 млн., тепло Земли - 115 млн., энергия биомассы - 35 млн., энергия малых рек - 65 млн., энергия низкопотенциальных источников тепла - 31.5,млн., всего - 270 млн. т.у.т.

Эти источники по объему составляют примерно 30% от объема потребления топливно-энергетических ресурсов в России, составляющего 916 млн. т.у.т. в год, что создает благоприятные перспективы решения энергетических, социальных и экологических проблем в будущем.

Особенностью современного состояния научно-технических разработок и практического использования ВИЭ является пока еще более высокая стоимость получаемой энергии (тепловой и электрической) по сравнению с энергией, получаемой на крупных традиционных электростанциях. Но актуальность данного вопроса не исчезает. В России имеются обширные районы, где по экономическим, экологическим и социальным условиям целесообразно приоритетное развитие возобновляемой энергетики, в том числе нетрадиционной и малой. К ним относятся:

  • зоны децентрализованного энергоснабжения с низкой плотностью населения, в первую очередь, районы Крайнего Севера и приравненные к ним территории;
  • зоны централизованного энергоснабжения с большим дефицитом мощности и значительными материальными потерями из-за частых отключений потребителей энергии;
  • города и места массового отдыха и лечения населения со сложной экологической обстановкой, что обусловлено вредными выбросами в атмосферу от промышленных и городских котельных, работающих на ископаемом топливе;
  • зоны с проблемами обеспечения энергией индивидуального жилья, фермерских хозяйств, мест сезонной работы, садово-огородных участков.
По сути, широкое использование возобновляемых источников энергии соответствует высшим приоритетам и задачам энергетической стратегии России.

К примеру, во многом энергетическая безопасность формируется на региональном уровне. Степень обеспеченности регионов собственными топливно-энергетическими ресурсами является одним из основных показателей восприимчивости регионов к угрозам энергетической безопасности. Освоение и использование местных энергетических ресурсов (гидроэнергетика малых рек, торф, небольшие месторождения углеводородных топлив и др.), а также использование других, в первую очередь возобновляемых, энергетических ресурсов (солнечная, ветровая, геотермальная энергия, энергия биомассы) позволят многие регионы страны перевести на энергообеспечение за счет ВИЭ, обеспечив их энергетическую независимость.

В некоторых областях использования ВИЭ Россия имеет крупные научные результаты, соответствующие мировому уровню. Выявлены большие потенциальные возможности использования этих источников энергии в решении энергетических и экологических проблем уже в ближайшем будущем.

Которые говорят о том, что мировая экономика в 2014 году выросла на 3 %, при этом произошло еще одно событие, значение которого крайне велико. Речь идет об эпохальном сдвиге. Дело в том, что впервые рост мировой экономики не сопровождался ростом выбросов углекислого газа. Отчет был представлен организацией «Сеть по политике возобновляемой энергии для XXI века», которая работает под эгидой ООН.

«Виной» этому послужили активнейшие действия Китая по разработке и переходу на возобновляемые источники энергии. В 2014 году Поднебесная ввела в строй столько гидроэлектростанций, «ветряков» и станций по использованию энергии солнца, сколько ни одна страна мира. Еще одна важная веха развития Китая в прошлом году заключалась в том, что впервые за долгое время в этой стране было снижено потребление угля.

А что же Россия?

Небезосновательно считается, что запасы невозобновляемых источников энергии, в первую очередь нефти и газа, у нашей страны довольно велики. В своем докладе на прошедшем в 2013 году в Москве Первом международном форуме «Возобновляемая энергетика» академик Фортов и доктор технических наук Попель говорят об этом :

«Россия, безусловно, лучше, чем любая другая страна в мире, в целом обеспечена собственными запасами традиционных топливно-энергетических ресурсов».

Действительно, большинство российских граждан прекрасно осведомлены о том, что наша страна занимает первые места по экспорту нефти и газа. В связи с этим развитие возобновляемых источников энергии даже может показаться блажью. Однако это не так. Почему? Среди рассуждений Фортова и Попеля можно выделить несколько основных аргументов, основанных на реальном положении дел:

1. Как это не покажется странным, многие регионы страны испытывают дефицит энергии. Это касается в том числе и Субъектов Федерации, расположенных на юге. Они нуждаются в поставках энергии, а также в завозе топлива.

Ученые говорят о том, что «для них столь же актуально решение проблемы региональной энергетической безопасности, как и для стран импортеров энергоресурсов».

2. Использование газа как источника энергии - гораздо более экологичная технология, чем сжигание угля или нефтепродуктов.

Однако по данным ученых по состоянию на 2013 год, в России было газифицировано около 50 % городских и 35 % сельских населенных пунктов. «Газпром» на своем сайте приводит показатели так называемого среднего уровня газификации на начало 2013 года: в городах - 70,1%, в сельской местности - 53,1% . В любом случае ясно одно - ситуация с газификацией России далека от идеальной. Естественно, люди, живущие в местности без газа вынуждены использовать уголь и нефтепродукты, являющиеся источником локального загрязнения.

3. Природные катаклизмы высветили, что и в районах централизованного энергоснабжения необходимо развитие малой распределительной генерации.

Благодаря ей можно повысить надежность энергоснабжения потребителей в небольших населенных пунктах, которые питаются электричеством через ЛЭП, а снабжаются теплом с помощью местных котельных.

4. ВИЭ дает отличный «подсобный» эффект: развивается бизнес, появляются новые рабочие места, рождаются новые инновационные технологии и производства.

5. У России большие запасы нефти и газа, но небезграничные.

Рано или поздно, придется думать об иных источниках энергии. Однако энергетика - очень инертная сфера: чтобы что-то серьезно изменить в ней или перестроить через годы, нужно начинать уже сейчас.

Итак, в научной среде есть серьезные силы, которые аргументированно поддерживают развитие в нашей стране возобновляемых источников энергии. А что происходит на уровне государства? На словах Министерство энергетики очень даже «за» :

«До недавнего времени по целому ряду причин, прежде всего из-за огромных запасов традиционного энергетического сырья, вопросам развития использования возобновляемых источников энергии в энергетической политике России уделялось сравнительно мало внимания. В последние годы ситуация стала заметно меняться. Необходимость борьбы за лучшую экологию, новые возможности повышения качества жизни людей, участие в мировом развитии прогрессивных технологий, стремление повысить энергоэффективность экономического развития, логика международного сотрудничества – эти и другие соображения способствовали активизации национальных усилий по созданию более зеленой энергетики, движению к низкоуглеродной экономике».

А что на деле? В реальности в России есть возобновляемая энергетика. К сожалению, некоторые граждане восторгаются зарубежными солнечными электростанциями и при этом не знают, что у нас они тоже есть, и не только они .

К примеру, в России действует относительно немало объектов малой гидроэнергетики: в Московской области, Карелии, на Кавказе, неподалеку от Уфы и Оренбурга. Энергия ветра используется в ряде кавказских регионов и близ Санкт-Петербурга, а также на севере европейской и азиатской частей страны. Ветряная электростанция построена, например, в Тикси - это крайне удаленное от привычной «цивилизации» место. Россия использует энергию волн Баренцева моря и развивает геотермальные станции на Курильских островах, Сахалине и, опять же, на Кавказе. Как мы видим, кавказский регион - это место, где используются разнообразные возобновляемые источники энергии, здесь же "добывают" энергию солнца. Впрочем, развивать солнечную энергетику можно и в других частях нашей страны:

Существует и государственная политика в области возобновляемых источников энергии, а также планы по их строительству. Один из важнейших документов в данной сфере - государственная программа «Энергоэффективность и развитие энергетики», утвержденная правительственным постановлением . В программе есть интересующий нас раздел - подпрограмма «Развитие использования возобновляемых источников энергии».

С одной стороны, увеличение количества ВИЭ кажется довольно незначительным. Однако предстоит серьезная работа - ведь на данный момент доля ВИЭ в общем энергобалансе страны не превышает 1 % . В случае успешной реализации государственной программы будет создана довольно серьезная основа для дальнейшего развития ВИЭ в стране.

Самый главный вопрос - достаточные ли это темпы? Важно отметить, что доля ВИЭ в мире растет довольно бурно. В некоторых странах, особенно, в развитых, доля ВИЭ в общем энергопроизводстве довольно внушительна:

Существует опасность, что Россия просто-напросто отстанет в очень серьезной и жизненно важной сфере - в энергетике и через пару десятилетий окажется в плохом положении. С другой стороны, правильно ли вообще ориентироваться исключительно на «долю в общем энергобалансе»? Не лучше ли будет в нашей стране, прежде всего, учитывать энергообеспеченность? Кроме того, нужно понимать, что долю ВИЭ наращивают до таких высоких значений в основном страны-импортеры энергоносителей. Если в Германии долю возобновляемых источников энергии в среднесрочной перспективе собираются поднять до 30 %, то это не значит, что наша страна должна ставить перед собой такую же цель.

России, естественно, нужно развитие использования возобновляемых источников энергии. Однако при этом важно учитывать множество факторов: и реальные экономические возможности страны, и фактические потребности, и мировую ситуацию.

Однако все эти методики не учитывают воздействия на основу основ физиологического существования человека – поверхностный слой почвы.
Оценка установок по приведенным затратам и сроку окупаемости – не единственный показатель, по которому можно судить об эффективности использования возобновляемых источников. Помимо всего прочего, такими установками вырабатывается «зеленая» энергия, не приводящая к снижению плодородия почвы. Кроме того, не учитываются дополнительные социально-экологические преимущества, получаемые при использовании систем возобновляемой энергетики.

Народнохозяйственный эффект

Рассмотрим дополнительную эколого-социально-экономическую эффективность системы возобновляемой энергетики, связанную с сохранением плодородия почв, по сравнению с традиционным энергоснабжением от топливной энергетики.

Как видим, народнохозяйственный эффект использования любой технологии ВИЭ может состоять не только в производстве электроэнергии, холода и теплоты, но и в сохранении при этом плодородия почвы (в том числе за счет использования зимой биометана). Это принципиальное преимущество возобновляемой энергетики, и его необходимо учитывать при определении эффективности ее использования.

Полезный результат в этом ракурсе может быть представлен в виде суммы полученной «зеленой» энергии и предотвращенного ущерба от деградации почвы.

Это применимо ко всем технологиям использования ВИЭ и позволяет учесть принципиальную особенность таких установок – возобновляемость. Обычно при сравнении энергоустановок, использующих ВИЭ и органическое топливо, учитывается только собственно выработка энергии. Например, считается, что гелиоустановка эффективна, если затраты на нее не превышают затрат на топливо, которое израсходует установка такой же мощности на органическом топливе. А такое преимущество при использовании, например, энергии Солнца, как сохранение гумуса, остается вне поля зрения.

Экономия ресурсов Земли становится все более важной задачей, и учет многогранных последствий от их сохранения, несомненно, будет давать более объективную оценку эффективности использования ВИЭ.

Народнохозяйственный эффект от сохранения гумуса в земле при использовании ВИЭ можно оценивать как Э = kпот × Вт × ц, где Вт – количество гумуса, сэкономленного в экосистеме, которое раньше расходовалось на выращивание растительной продукции, используемой в качестве топлива при самозаготовке, kпот – коэффициент, учитывающий прирост первичного гумуса при нахождении «пашни под парами», ц – удельная оценка (цена) сохранения гумуса в почве.

При определении эффективности системы энергетики ВИЭ требуется учет не только денежных ресурсов (капитальных вложений, текущих затрат), но также сырьевых – экономия удобрений, чистой воды на полив и т. д.

Так, солнечная энергия является экологически чистым видом топливно-энергетического ресурса, что необходимо учитывать в виде экологического эффекта. Воздействие выбросов (СО2) при сжигании биометана на окружающую среду условно принимаем нулевым, поскольку в природных условиях из органической биомассы (отходов), которая обеспечила получение биометана в биореакторе, в атмосферу за счет естественного брожения выделился бы биометан. А вот преобразование органических отходов в биометан и удобрения необходимо учитывать в виде экологического эффекта, уменьшающего загрязнение почвы и окружающей среды далеко не безвредными концентрированными отходами животноводства.

Использование биометана не требует очистных сооружений для биогазовых установок (очистка биогаза от вредных газов осуществляется в технологическом цикле установки). Поэтому экологический эффект может быть учтен как предотвращенный ущерб благодаря отсутствию вредных сбросов в почву.

Ущерб для экосистемы

Удельный ущерб при одинаковых выбросах в атмосферу для каждой экосистемы свой. Можно определять экологический эффект как предотвращенный ущерб почве благодаря уменьшению вредных выбросов при добыче и транспортировке энергоносителя.

При оценке ущерба водным объектам можно исходить из уровня содержания растворимого кислорода в воде и органических отходов.
Так же как и при загрязнении почвы и воздуха, почти нет предела разнообразию загрязнителей, которые могут сбрасываться и сбрасываются в водную среду. Основные источники органических разлагаемых загрязнителей вод – это промышленность, ТЭЦ, ТЭС, сельское хозяйство, бытовое хозяйство и слив дождевых вод в городах. Если сброс органических загрязнителей в конкретном месте не слишком велик, то содержание кислорода в реке (водоеме) сначала уменьшается до определенного уровня, а затем снова восстанавливается (при условии, что не происходит других сбросов по течению реки). А если объем сброшенных в воду органических веществ превышает определенный уровень, процесс их разложения может привести к истощению растворимого кислорода.

Ущерб от промышленных стоков, как известно, очень высок – содержание кислорода в воде резко снижается.

Высокие уровни содержания растворимого кислорода (7‑8 мг / л) необходимы для некоторых ценных видов рыбы (8‑10 мг / л – стадия насыщения кислородом в большинстве водоемов в летний период). Для большинства же рыб вполне подходящи 4‑5 мг / л. Однако при уровне ниже 2‑3 мг / л могут выживать только некоторые.

Кроме уменьшения растворимого кислорода, сброс органических отходов может иметь и другие нежелательные последствия. В ходе разложения органики образуются питательные вещества для водорослей, стимулирующие их рост. Опасность чрезмерного роста водорослей – одна из наиболее трудноразрешимых задач в управлении качеством водной среды, особенно в озерах, заливах и эстуариях.

Неразлагаемые загрязнители вод не перерабатываются речной биотой. Для большинства из этих загрязнителей единственные существенные изменения, которые могут происходить в поверхностных водах, – растворение и осаждение, в подземных водах – осаждение и абсорбция. Эта группа состоит из различных неорганических химикатов, включая тяжелые металлы, частицы почвы и разные типы коллоидных веществ. Когда все эти вещества накапливаются в достаточно больших объемах, они могут оказаться ядовитыми по отношению к некоторым формам жизни, порождать неприятные запахи, увеличивать жесткость воды и, особенно в присутствии хлоридов, вызывать коррозию металлов.

Вода в ряде случаев становится непригодной для орошения и полива, причем не только для выращиваемого урожая. Ее гнилость наносит ущерб почве, выводя целые поля из севооборота.

Как понизить нагрузку на биосферу

Использование ВИЭ позволяет существенно уменьшить нагрузку на биосферу, понизить эргодемографический индекс территории.
Определенный интерес представляет использование отходов сжигания, например, угля, торфа и сланцев. Зола угольная и сланцевая широко используется для раскисления почв и производства стимуляторов роста растений. Зола торфа востребована в фармакологии.

При сооружении, например, для системы энергоснабжения котлованов под солнечный соляной пруд (ЭПР № 19 (255) за 2014 г.) верхний плодоносный слой земли (чернозем, гумус) может быть продан, а значит, эффект от его реализации будет снижать стоимость системы. А если он будет использован для улучшения плодородия почвы собственника системы, то эффект будет выражаться в повышении урожая выращиваемых культур, компенсируя уменьшение площади участка, использованной под пруд.

При использовании солнечной энергии, энергии воды и биометана отсутствуют риски, возникающие, например, при использовании угля и сжиженного газа, распространения вредных организмов и сорных растений транспортными средствами.

Санитарный эффект (отсутствие последствий фитосанитарного контроля и т. п.) тоже может быть учтен как предотвращенный ущерб благодаря отсутствию завоза топлива при использовании системами солнечной энергии и биометана.

Антропогенное воздействие

При нынешних темпах развития цивилизации не получается резервировать слишком большие участки природы и тратить на ее охрану слишком много средств, т. к. это приводит к большим экономическим потерям для общества.

Резкое ухудшение экологической обстановки в России связано с тем, что многие выбрасываемые в окружающую среду вещества, в том числе канцерогенные, в форме твердых частиц или в растворенном состоянии накапливаются в ней. В связи с этим на установленные сегодня уровни предельно допустимых концентраций (ПДК) постоянно ориентироваться нельзя. Для поддержания качества окружающей среды на приемлемом уровне необходимо со временем изменять ПДК в сторону ужесточения, что не практикуется.

Более 99 % всех выбросов ТЭС поступает в атмосферу из дымовых труб, создавая наибольшие приземные концентрации на расстоянии нескольких километров от ТЭС в зависимости от скорости ветра и его направления.

В настоящее время самым мощным источником поступления радионуклидов в окружающую среду являются объекты ТЭК на органическом топливе – угле, сланце, нефти. При сгорании органического топлива в атмосферу с дымовыми выбросами поступают радиоактивные элементы и продукты их распада. Доза в результате выбросов угольной ТЭЦ существенно (в 5‑40 раз) больше, чем АЭС равной мощности, даже если принять коэффициент очистки выбросов золы ТЭЦ равным 0,975. А очистка дымовых газов – дорогое удовольствие, капитальные затраты на сооружение блоков очистки ТЭС составляют 186‑264 тыс. долларов на 1 МВт установленной мощности.

По оценкам специалистов Института проблем рынка РАН, прямой годовой экономический ущерб вследствие негативных антропогенных воздействий на окружающую среду в России в середине 90‑х годов составлял порядка 10 % от величины ВВП.

Использование биомассы

На государственном уровне годовой экономический результат от энергетики ВИЭ может проявляться в стоимости сохраненных для будущих поколений природных ресурсов (нефти, угля, газа), в возможном увеличении прибыли от продажи экспортно-ориентированных видов природных ресурсов, а также в выручке от продажи квот на выброс парниковых газов (СО, СО 2) в соответствии с Киотским протоколом.

Кроме того, в этот годовой экономический эффект должны включаться выгоды, связанные с пропорциональным уменьшением образования отходов.

В настоящее время часть мирового сообщества, обеспокоенная выбросами СО 2 усиленно пропагандирует использование биомассы. Мотивация такова: при сжигании биомассы действительно выделяется СО 2 , но он ранее был поглощен растениями из атмосферы, поэтому биомасса считается нейтральной с точки зрения выбросов СО 2 при условии возобновления зеленых насаждений в достаточном объеме.

Однако не все так просто и здесь. Использование биомассы в качестве энергоресурса биологи считают следствием невежества, ибо изъятие биомассы из общей цепи взаимосвязанных биопроцессов на Земле нарушает равновесие биосистемы (продуктивности зональных экосистем), что может повлечь за собой непредсказуемые негативные последствия. Например, если в лесу старое дерево падает и гниет, то на его месте вырастает новое такое же дерево. Но если упавшее дерево убирают из леса, то вследствие истощения почвы второе дерево будет хуже первого, третье второго и так далее.

Нетронутая тайга сохраняется тысячелетиями, а систематическая рубка деревьев превращает могучие леса в чахлое редколесье (лесостепи), лесостепи – в степи и так далее.

Для исключения распространения пыли от промышленных предприятий, ТЭЦ, ТЭС и т. д. необходимо восстанавливать леса, а не пропагандировать использование древесины в качестве возобновляемого органического топлива, и вот почему.
Листовая поверхность в 1 кв. м задерживает 1,5‑3 г пыли. Корневая система растений закрепляет почву и тем самым уменьшает площадь, которая может быть источником запыления среды.

Зеленые насаждения на площади в 1 га за год очищают воздух от 50‑70 тонн пыли, уменьшая ее концентрацию на 30‑40 %.

Зелень на улицах города может в 2‑3 раза снизить запыленность атмосферы по сравнению с улицами без зелени.

Лес отфильтровывает из воздуха даже радиоактивную пыль. Установлено, что листья и хвоя деревьев могут захватывать до 50 % этой пыли, защищая посевы от радиоактивных загрязнений. Полезащитные полосы могут задерживать содержащиеся в воздухе радиоактивные аэрозоли, снижая плотность загрязнений полей и пастбищ.

Поддержание плодородия

Решением самого нижнего уровня жизнеобеспечения как отдельного человека, так и мирового сообщества является решение проблемы голода.

Поскольку экологически чистые продукты можно получить только на землях, не отравленных золой ТЭЦ, пестицидами, излишним количеством минеральных удобрений, нитратами, то в этой связи на первое место, кроме наличия соответствующей техники, выходит вопрос о ресурсе земли и поддержании ее плодородия в настоящее время и на дальнейшие периоды.

Давно известно, что одним из важнейших показателей плодородия является содержание в почве органического вещества или гумуса. Чем больше его, тем лучше водный, воздушный и тепловой режимы плодородного слоя земли, тем богаче он основными элементами питания растений, тем активнее в нем идет процесс создания живого из «неживого».

Известно также, что почва – это живой организм, комплекс микро- и макрофауны (микроорганизмов и почвенных животных) в сочетании с элементами «неживого» минерального и органического вещества, находящийся в тесном взаимообменном процессе. Почвенная микро- и макрофауна является создателем почв.

«Производство» гумуса происходит ежегодно в огромных количествах. Пик переработки приходится на осень, когда растения в большинстве своем погибают и падают на почву. Вся эта огромная масса мертвых растений, содержащих большое количество различных питательных веществ, достается на переработку почвенным микроорганизмам и животным – червям, которые перерабатывают их в гумус. Из каждой тонны такого сухого материала образуется 600 кг гумусного органического удобрения, включающего в себя все необходимые минеральные элементы питания для растений, вновь появляющихся весной.

Создать гумус другими способами пока невозможно. Гумус – это «хлеб для растений». В нем сосредоточено 95 % запасов почвенного азота, 60 – фосфора, 80 – калия, содержатся все другие минеральные элементы питания растений в сбалансированном состоянии.

Роль гумуса

Гумус – это «консервы почвенного плодородия». Он накапливался и сохранялся в черноземах весь послеледниковый период, т. к. гуматы кальция, магния и других металлов нерастворимы и не вымываются из почвы водой, но расходуются только корневой системой растений по мере необходимости. Он создает зернистую структуру почвы, предохраняет ее от ветровой и водной эрозии, обеспечивает снабжение растений необходимой для фотосинтеза углекислотой, биологически активными ростовыми веществами.

Плодородие полей напрямую связано с количеством и качеством гумуса в почвах. В знаменитых черноземах Центрального и Северокавказского регионов содержалось 10‑14 % гумуса, а мощность слоя чернозема достигала 1 м.

Однако надо иметь в виду и следующее: с полей, садов и огородов мы ежегодно снимаем урожай, унося вместе с ним часть питательных веществ, которые не возвращаются в почву. От недополучения этой части органики почвы истощаются и теряют плодородие. Химические удобрения не могут в полной мере восполнить эту убыль питательных элементов и совершенно не компенсируют потерю гумуса из почвы. Более того, химические удобрения в почве способствуют усилению распада (минерализации) гумуса, они же совместно с пестицидами травят (убивают) червей – основных производителей гумуса в почве. Переработка мертвых остатков растений в гумус прекратилась, а почвы истощились, перестали быть плодородными. Вот почему нередко случается так, что вывоз навоза на поля не может поднять их плодородия – перерабатывать навоз в почве уже некому.

Использование больших доз химических удобрений, пестицидов, высокоинтенсивных обработок почвы резко сократило, местами до полного исчезновения, в почве количество почвообразующих животных и подорвало процесс гумусообразования. Плодородие почв существенно снизилось. Химические удобрения – допинг для почвы. В присутствии минеральных удобрений идет усиленная минерализация гумуса (разложение его на СО 2 и зольные элементы). Постоянное использование такого допинга в возрастающих дозах преступно, т. к. обрекает все живое на голод и вымирание.

Для поддержания бездефицитного баланса гумуса необходимо ежегодно вносить не менее 6‑7 т навоза на 1 га. Однако имеющееся поголовье скота не может обеспечить «производство» такого количества.

Не зря в последнее время для регулирования баланса гумуса и питательных веществ в качестве ресурсосберегающих систем удобрений в почву во время уборки зерновых вносят измельченную солому. Использование измельченной соломы позволяет решать хозяйствам актуальнейшую проблему по утилизации малоценной соломы и исключить затраты на ее сволакивание, перевозку, скирдование и использовать солому для поддержания плодородия почвы с уменьшением ее эрозии и выгорания гумуса.

Поэтому биогазовые установки, использующие вырабатываемый биогаз (до 30 %) на технологические нужды (для поддержания температуры в биореакторе) и лишающие дождевых червей части пищи, нельзя рассматривать как экологически чистые технологии.

Деформирование среды

Мировое сообщество к самым негативным факторам воздействия ТЭКа на биосферу относит выбросы СО 2 (ежегодно количество углекислого газа в атмосфере продолжает увеличиваться на 0,002 %), сжигание кислорода, снижение энергии фотосинтеза за счет загазованности воздуха, а также кислотные дожди, деградацию лесов и земель, которые способствуют дальнейшему техногенному опустыниванию.

В связи с этим резко снизилась и продолжает снижаться первичная биопродуктивность (количество органических веществ, производимых в биосфере). Происходит глобальная деформация окружающей среды.

Сохранение этих тенденций представляет большую экологическую угрозу.

Использование энергетики ВИЭ, в том числе в качестве вторичного инструмента, для обеспечения бесперебойной «обработки» почвы сегодня выходит на одно из первых мест. Экономические потери при отсутствии бесперебойного энергоснабжения в сельском хозяйстве сродни потерям, которые будут наблюдаться на любом производстве непрерывного цикла, будь то металлургический цех или нефтеперерабатывающая установка. Потерь продукции можно не допустить только путем ввода дополнительных производственных мощностей при надежном энергообеспечении производства, хранения, переработки.

Разумное использование

Несомненно, что эффективность использования технологий энергетики ВИЭ с течением времени будет возрастать. Этому будет способствовать и все большая необходимость экономии гумуса, и технический прогресс, и совершенствование организации создания и применения установок ВИЭ.

Применение энергетического оборудования для обработки почвы, ухода за растениями и животными, отопления помещений, приготовления пищи имеет как социальное, так и экономическое значение. Возникает сопутствующий эффект также в добывающих и перерабатывающих отраслях, в машиностроительном комплексе, что будет оказывать влияние на улучшение инвестиционной политики в стране.

Отпадает необходимость в увеличении пропускной способности транспортной инфраструктуры, т. к. при сооружении, например, солнечных соляных прудов и котлованов будут использоваться в основном природные «готовые и вечные» материалы, и не требуется транспорт топлива в прежних объемах.

Структура составляющих социально-эколого-экономического эффекта отдельно взятой системы энергетики ВИЭ показывает, как взвешенно нужно подходить к анализу эффективного использования новых технических решений. А ведь часто при освоении различных по климатическим условиям территорий выбор того или иного источника энергоснабжения поручают людям, далеким не только от энергетики ВИЭ, но и от традиционной, топливной энергетики.

Странно, что правило разумного использования специалистов совершенно отбрасывается, когда дело касается децентрализованного энергоснабжения или обеспечения энергией угнетенных с экологической точки местностей. Некоторые из числа корифеев традиционной энергетики, – без сомнения, крупные специалисты в своей отрасли знания, – считают себя компетентными высказывать догматические суждения по актуальности и социально-эколого-экономической эффективности новых направлений энергетики ВИЭ. А также всему, что к ней относится, не будучи свидетелями ни по одному из ее «феноменов» и часто совершенно не имея представления о ее принципах и практике.



Публикации по теме