Ювелирный аппарат точечной сварки. Ремонт ювелирных изделий

При изготовлении металлических художественных изделий широко применяются дуговые способы сварки. Например, для изготовления несущих конструкций в скульптуре или в металлических скульптурных композициях, а также в металлопластике, в реставрационных работах и т.п. одним из наиболее распространенных методов является ручная дуговая сварка.

В ювелирном производстве нашли применение следующие способы сварки: дуговая точечная сварка неплавящимся электродом, контактная точечная сварка и лазерная сварка. В последнее время свое применение в ювелирной отрасли находит и диффузионная сварка. Эти способы можно использовать для соединения деталей из золота, серебра, платины, меди и ее сплавов и др.

2.2.1. Дуговая точечная сварка неплавящимся электродом

Дуговая сварка – сварка плавлением, при которой нагрев осуществляется электрической дугой. Дуга – мощный стабильный электрический разряд в ионизированной атмосфере газов и паров металла. По способу защиты дуги и расплавленного металла различают сварку открытой дугой, под флюсом и в защитном газе; по виду электродов – сварку плавящимся и неплавящимся электродами; по степени механизации процесса – ручную, полуавтоматическую и автоматическую сварку.

В ювелирном производстве широко применяются аппараты, осуществляющие сварку с помощью неплавящихся электродов в атмосфере защитного газа. Отлично зарекомендовала себя в ювелирной промышленности серия аппаратов точечной сварки PUK компании «Lampert» (Германия) (рис. 2.1а ), а также компактный сварочный аппарат «Orion pulse150i» (США) (рис. 2.1б ).

При касании электродом места сварки происходит замыкание цепи, втягивание электрода в держатель (рис. 2.2) и образование электрической дуги, которая расплавляет металл в точке сварки. При этом очень важно аккуратно касаться изделия кончиком электрода. Изделие должно иметь хороший электрический контакт с аппаратом. Сварку можно осуществлять путем местного расплавления металлов под действием электрической дуги и с применением присадочной проволоки. Сварка выполняется с помощью вольфрамовых электродов. В качестве защитного газа применяется высокочистый аргон.

Рис. 2.1. Аппараты точечной сварки:

а аппараты точечной сварки PUK компании «Lampert»;

б сварочный аппарат «Orion pulse150i»

Рис. 2.2. Электрододержатель

Аппараты серии PUK оснащены оптическим устройством, который позволяет точно размещать изделия и подводить кончик электрода к месту сварки. Возможно применение микроскопа «Mezzo 10×» с «рукой» для закрепления держателя. Микроскоп совместим со всеми модификациями аппаратов точечной сварки PUK. Автоматика обеспечивает 100% защиту глаз и комфортное ведение процесса сварки без усталости и нагрузки на сетчатку глаза. Для защиты глаз от излучения микроскоп оснащен закрывающейся шторкой, срабатывающей во время импульса. Под микроскопом видны мельчайшие детали сварки, что позволяет выполнить ее более четко и качественно. Подставка для держателя электрода с фиксаторами очень удобна – при сварке она освобождает руки .

Достоинством аппарата «Orion pulse150i» является то, что интерфейс управления отображается на 9-дюймовый цветной сенсорный экран, который удобно крепится к 3D-микроскопу «Flex» .

В ювелирном деле многие технологические приемы, открытые давным-давно, долгое время оставались неизменными, словно их обошел научно-технический прогресс. Скажем, сварка не находила признания у ювелиров, предпочитавших соединять части украшений пайкой. Чтобы, например, изготовить изделие с накладной сканью, проволоку сначала скручивали, затем изгибали в виде завитков или спиралей и напаивали на основу, представлявшую собой шарики, тоже напаянные на металлическую поверхность.

Положение стало меняться с развитием электронной промышленности, при которой, совершенствуя сборку полупроводниковых приборов, пришлось решать задачи, свойственные ювелирному искусству. Со временем выяснилось, что лазер, снабженный микроскопом, постоянно используемый в сборке микросхем, весьма удобен и в ювелирном деле. Лазерным лучом можно «дотянуться» до любого труднодоступного места в украшении или, плавно меняя мощность импульса, нанести лучом маленькую, аккуратную сварную точку на локальном участке - в двух миллиметрах от горячего пятна температура не повысится. Лазер также способен выровнять поверхность, «постреляв» по ней расфокусированным лучом и тем самым оплавив ее верхний слой. Наконец, мощные лазерные импульсы способны испарить лишний металл или же пробить микроотверстие в какой-то детали.

Микроэлектроника, где перечень используемых материалов обширнее, чем в любой другой области, потребовала применения самых разных видов сварки - , термокомпрессионной, . Диапазон их возможностей очень широк, и это позволяет выполнить самые разные сборочные операции в ювелирных технологиях.

Очень похоже, что именно специалисты, занимавшиеся микросваркой электронных приборов, стали проводниками своих технологий в ювелирное дело. Сломалась сережка или порвалась цепочка у близких или знакомых, почему бы не исправить поломку, если в распоряжении имеется набор современного прецизионного оборудования. Удалось отремонтировать поврежденное украшение - значит, можно попробовать изготовить простенькую брошь или перстень, а затем - взяться и за более сложное изделие. Примерно по такой схеме развивались события в 90-х годах ХХ века на кафедре «Микросварка» («Технологические автоматизированные комплексы») в Московском институте электронного машиностроения, где накопился большой опыт использования современных методов сварки в ювелирном искусстве.

Особенно привилась в ювелирном деле электрическая контактная сварка, точнее, ее разновидность - сварка конденсаторная. Конденсатор быстро разряжают через трансформатор, и в его вторичной обмотке (один виток толстого провода) возникает мощный импульс тока, он проходит через соединяемые детали, при этом в районе контакта выделяется значительное тепло и, расплавляя здесь соединяемый материал, образует сварное ядро.

При пайке ювелирных изделий обычно приходится выполнять трудоемкую черновую сборку, соединяя все крупные и мелкие детали и закрепляя их так, чтобы они не рассыпались от тепловых деформаций, вспучивания флюса, давления пламени газовой горелки (которой в основном пользуются ювелиры), или просто от неосторожных движений. Поэтому ювелирным изделиям старались придать такие структуры и формы, чтобы подпружинить, упереть друг в друга все их части и детали.

В сложных изделиях выполнялась многоступенчатая пайка, и для каждой последующей операции брали припой с более низкой температурой плавления, что, конечно, весьма осложняло процесс сборки. Кроме того приходилось использовать относительно крупные (по ювелирным масштабам) детали, чтобы соединение пайкой было достаточно прочным. С этой цепью, например, при изготовлении сканых украшений, расплющивали проволоку и припаивали детали к плоской поверхности. Припой затекал в зазоры под детали, и это требовало очень точно выдерживать размеры зазоров.

При конденсаторной сварке детали без труда соединяют последовательно, одну за другой, и это позволяет создавать объемные, довольно сложные ювелирные конструкции, напоминающие, например, деревце. Нагрев при этом происходит только в районе соединения, температура самого изделия повышается настолько незначительно, что во время сварки его можно держать в руках. Это особенно важно для изделий с ювелирными камнями, которые, как правило, не выдерживают высоких температур. Для таких камней готовят особое ноже - каст. На это ложе укладывают камень и подгибают края каста или же используют особые выступы - крапаны. При контактной сварке камни укладывают на предназначенное для них место в самом начале работы, смотрят, как сочетается рисунок камня с общим узором изделия, поправили его части или добавляя новые элементы.

Еще одно достоинство конденсаторной сварки - она способна соединять самые разные металлы, с том числе такие, которые практически не поддавались пайке. И, конечно же, сварка не нуждается в припое, который обычно ухудшает качество соединений.

Правда, установки контактной сварки, выпускаемые промышленностью и используемые в электронной промышленности, оказались неудобны для ювелирных работ. Сотрудникам кафедры пришлось разработать собственный вариант и виде пинцета с гибкими проводами, которым можно произвести сварку в глубине разных ажурных изделий. Там, где требуется более мощная сварка, используют особый стержень (карандаш) с рукояткой и маленький медный столик размером в два спичечных коробка, на который кладут изделие.

На очереди стояло - внедрение в ювелирное дело дуговой сварки. Правда, свойства электрической дуги, используемой в промышленности, и дуги малых токов (менее 5 ампер), которой ведут сварку мелких деталей, существенно различаются. Микродуга обычно капризна, горит неустойчиво, «гуляет» по поверхности изделия, часто обрывается и гаснет. Специалисты кафедры избавились от этих недостатков, используя, в частности, импульсную модуляцию сварочного тока, которая стабилизирует дугу.

Еще одна проблема дуговой сварки состоит в том, что дугу приходится «зажигать» по сути вслепую, касаясь наугад электродом поверхности изделия. Лишь когда дуга зажигается, начинают следить за процессом сварки через защитное стекло. Созданная на кафедре электронная схема отслеживает момент прикосновения электрода к изделию и лишь некотороевремя спустя возбуждает дугу. Этот интервал позволяет установить электрод в нужной точке, подвести защитное стекло, приподнять электрод над поверхностью изделия, и только в момент его отрыва начать сварку. Кроме того электроника строго дозирует энергию, вводимую в сварной шов, и он получается без дефектов.

Остается сказать, что использование микроэлектронной технологии позволяет выполнять украшения со значительно большим, чем при пайке, числом деталей, затрачивая гораздо меньше труда. При этом практически неограниченны возможности наращивания величины изделия и его усложнения.

САНТИ ВАЛЕНТИ

Laservall SpA, Доннас, Италия

1. Введение

1.1 Основные свойства лазерного луча

Монохромность

Лазерный источник имеет узкий спектр эмиссии, сконцентрированный на одной длине излучения. Для лазера Nd: YAG длина волны составляет 1064 нм.
В основном используется вместе с цепевязальными автоматами.

Коллимация

Лазерный луч характеризуется высокой направленностью и концентрацией, достигаемыми при помощи специальных фокусирующих линз.

Ниже приведены области ювелирного производства, в которых используется лазерные источники:

Nd: YAG импульсный оптоволоконный с фокусирующей насадкой (рис.1)
Средняя выходная мощность до 70 Вт.
В основном используется вместе с цепевязальными автоматами.

Nd: YAG импульсный с прямым пучком и фокусирующей насадкой (рис. 2).
Средняя выходная мощность до 50 Вт.
Преимущественно используется для ручной сварки под микроскопом ювелирных изделий с драгоценными камнями.

Nd: YAG непрерывного излучения с модуляцией добротности DPSS TEM 00 (рис. 3а и 3b).
Средняя выходная мощность до 40 Вт.
Основная область использования: маркировка, микрорезка, пробивка отверстий.

Nd: YAG импульсный с ламповой накачкой (рис. 4а и 4b)
Средняя выходная мощность до 80 Вт.
Используется для глубокой маркировки, гравировки. Морально устареет с появлением источников с диодной накачкой, мощность которых сегодня достигает 100 Вт.


Рисунок 2
-
Схематическое представление импульсного лазера Nd: YAG с прямым пучком и фокусирующей насадкой.


Рисунок 3а
-
Схематическое представление лазера Nd: YAG непрерывного излучения с модуляцией добротности DPSS TEM 00

1.2. Импульсные лазеры Nd: YAG

История и применение

Наиболее распространенным видом применения лазера является сварка.

Рисунок 3а -
Схематическое представление лазера Nd:
YAG непрерывного
излучения с модуляцией добротности DPSS TEM 00

Рисунок 3b -
Фотография прибора,
указанного на рис. 3а

В ювелирной области первый прикладной опыт лазерной сварки был получен одиннадцать лет назад. Сегодня в мире насчитывается свыше 3000 импульсных лазеров, занятых сваркой.

В мировом масштабе Италия занимает лидирующие позиции, так как перерабатывает 22% добытого золота, не предназначенного для слитков или для других промышленных или медицинских целей. Поэтому здесь должно быть широкое поле применения лазерной техники.

Техника использования лазера связана и "безошибочна" по применению, имея различные прикладные аспекты, со сваркой, маркировкой и резкой.

Рисунок 4а -
Схематическое представление импульсного лазера Nd:
YAG с ламповой накачкой

Рисунок 4b - Вид прибора,
показанного на рис. 4а


Рисунок 6 - Количество лазерных источников, введенных в эксплуатацию за год


Рисунок 6а - Цепевязальный станок с головкой для лазерной сварки


Рисунок 6b - Золотая цепь, сваренная при помощи лазера

Сварка

Сварка фуги звена на цепевязальном автомате (рис. 6а и 6b).

Ручная сварка ювелирных изделий и уникальных украшений с драгоценными камнями.

Уменьшение пористости, появляющейся при литье, с использованием припоя и без него. Обычно припой сделан из того же сплава, что и ремонтируемое изделие.


Рисунок 7
- Ручная лазерная сварка
золотого кольца 585 пробы с камнем


Рисунок 8 - Двухцветное золотое
кольцо 18 К (белое и желтое золото)

2. Сварка

2.1 Преимущества лазерной сварки по отношению к традиционным методам

Постоянство и неизменность пробы
С того момента, когда перестают использоваться припои и сварка производится частичным расплавлением соединяемых металлов, исчезают все проблемы с пробой.

Экологические аспекты
Для сварки не используются припои или порошки. Для очистки изделия не используются агрессивные химикаты и/или растворители. Отсутствуют проблемы с отходами.

Упрощение производственного процесса.
Система цепевязальный станок – лазер упрощает производственный процесс и способствует экспорту станков в страны, где не хватает традиционного опыта итальянских производств.
Пример: Венецианское плетение с запатентованным производственным циклом или цепи из биметалла.

Ускорение производственного цикла
Ускорение производственного цикла создает очевидные экономические преимущества ускорения оборота металла в производстве.

Улучшение внешнего вида многоцветных цепей
Типичная лазерная сварка позволяет соединить виды драгоценного металла, различные по пробе и составу сплава.
Многоцветную сварную цепь легко распознать, так как ее расцветка, не подвергаясь нагреву в печи, остается яркой (рис. 8).

Прихватка
Лазерная сварка может быть использована и для простого соединения деталей перед пайкой.

Реализация новых производственных процессов.
Сильный толчок к ювелирному творчеству, связанный с изготовлением новой продукции, использует лазерную сварку. Одним из примеров является цепь Кордовая. Эта цепь породила в Италии, на Дальнем Востоке и в США настоящую производственную лавину.
Конечно, сама цепь изготавливается с давних пор еще со времен этрусков, но лазер обеспечил простоту ее автоматического производства.

На самом деле, тот, кто первым предлагает новые производственные технологии изготовления известной или новой продукции, получает возможность проникнуть и на новые и старые рынки и обеспечить себе заработок.

2.2 Новейшие области применения

Цепь Навесная (Pendent Chain)

Одна из последних разработок, порожденная использованием лазера Nd: YAG совместно с цепевязальными станками. Цепь очень распространена в США и носит название "Навесная".
Обычно это 16 дюймовая цепочка (около 40 см), из проволоки диаметром 0,11 мм, весом 1 г, включая замок. На приведенном рисунке (рис. 19) заметны крайне малые размеры звена.
Пайка такой цепи в обычных проходных печах приводит к 30 процентному браку даже у опытных мастеров. Непосредственная сварка на станке сводит отходы к нулю.
Традиционный процесс производства Навесной цепи предполагает использование специальной проволоки с низкотемпературным сердечником, то есть содержащей внутри припой.

Благодаря использованию лазера низкотемпературный сердечник был заменен сплавом с более высокой температурой плавления, а благодаря небольшим добавкам титана была достигнута мягкость и механическая прочность, более высокая, чем у проволоки с припоем. Заслуживает внимания и больший блеск проволоки.

Многозвенные цепи

Многозвенные цепи, подвергаемые сколотке типа тройной, четверной, пятерной с большим размером звена свариваются при помощи лазерного луча, звено за звеном, непосредственно на станке, что позволяет избежать в момент пайки типичного открытия стыка из-за нагрева и пружинящего эффекта. Это один из примеров интеграции технологии использования лазера и традиционной технологии пайки в печи, предназначенной для ускорения всего производственного процесса, увеличивая отдачу благодаря значительному снижению количества отходов. Из ювелирных предприятий доходят известия о том, что цепь может быть полностью сварена лазером, а не просто прихвачена. Тем не менее, в дальнейшем цепь все равно пропускается через печь, не используя порошок для того, чтобы обеспечить полную рекристаллизацию металла и сделать механические характеристики однородными.

3. Маркировка, гравировка, резка, пробивка отверстий

Используя мономодальный лазер Nd: YAG непрерывного излучения с модуляцией добротности DPSS TEM 00 со средней мощностью до 40 Вт, можно выполнить как высокоскоростную маркировку за один проход с глубиной в несколько сотых миллиметра, так и гравировку с глубиной до нескольких десятых не гладких и изогнутых поверхностях в области действия фокусирующей линзы.

Типичное оснащение лазерной системы, предназначенной для этой области применения – сканирующая головка по координатам XY, по которым все перемещения управляются при помощи программного обеспечения, рис. 14.
То есть, начиная с маркировки, гравировки, резки, прикладное использование лазера различается только мощностью выхода и в большей степени качеством оптики лазерного источника.

Пробивка отверстий в пластинах – это резка диаметров, составляющих даже десятую часть миллиметра, поэтому она во всем совпадает с теоретическим процессом обычной резки.

3.1 Маркировка и декор

Обычно производится для изготовления типичных орнаментов на серьгах, браслетах, колье, используя метод сатинирования. Этот же метод становится основным для того, чтобы выделить на светлом фоне рисунок на медали, рис. 15.

Самые интересные эффекты получаются на многоцветных поверхностях из драгоценного металла, изготовленных при помощи либо вальцев, либо гальванических покрытий. Устранение блеска в отдельных областях, управляемое программным обеспечением, благодаря контрасту, создает "разницу в цвете", рис. 16 и 17.

3.2 Гравировка

Лазер Nd: YAG непрерывного излучения с модуляцией добротности TEM 00 в определенных условиях может обеспечить среднюю фокусировку луча размером 30 микрон.
Таким образом, лазер в состоянии выполнять тончайшую гравировку с чрезвычайно малыми размерами, рис. 18. Можно "вписывать" логотипы или маркировку в квадраты со стороной даже 1 мм, позволяя "конкретно" персонализировать ювелирную продукцию или при необходимости кодифицировать серии изделий, чтобы избежать подделок.


Рисунок 18 – Гравировка знаков Зодиака


Рисунок 19 - Проходная вставка, персонализирующая цепь Панцирная

Рисунок 20 - Диск из желтого золота 12 К, толщиной 0,15 мм. Отверстия изготовлены при помощи круговой вырезки

3.3 Резка

Это расширение технологии гравировки в случае глубины, превышающей толщину пластины.
Одной из первых областей применения обычного лазера для маркировки стала разка золотой фольги чрезвычайно малой толщины в несколько сотых миллиметра (в дальнейшем собранных для легкости обращения в книжицы по десять листов), используемых для отделки "червонным золотом" рамок или статуй.

Обычно резка производится в несколько проходов в зависимости от толщины драгоценного металла, которая может достигать до десятых долей миллиметра.
Обычным применением на сегодняшний день является проходная вставка в Панцирные цепи для их персонализации, рис. 19.
В частности, используя системы с соответствующей мощностью и яркостью и применяя сканирующую головку XY, мы обеспечили резку золотых и серебряных пластин толщиной до 0,3 мм, рис. 20.
Используя те же лазерные источники, может быть, более мощные с прямой фокусировкой и подачей кислорода, мы проверили возможность резки до толщины 0,5-0,6 мм как золота, так и серебра.

В производстве очень важным процессом является сварка. Такой аппарат, где лазер используется как энергетический источник, называется лазерная сварка, которая применяется для соединения одинаковых и разнородных металлов. Это наиболее современный способ для сварки металлических частей, который в последние годы все больше привлекает к себе внимания.

Такая сварка была создана в 60-е годы ХХ века. Плюс излучения лазера — высокое скопление энергии. Это позволяет соединить различные металлы и сплавы толщиной от микрометра до одного сантиметра.

Лазерное излучение создает сварной шов таким способом: наводится в фокусирующую систему, где преобразуется в меньший пучок, поглощает, нагревает и расплавляет свариваемые материалы. Для фокусировки энергии в сварке лазером используются направляющие зеркала.

Микросварка соединяет материал толщиной до 100 мкм, мини-сварка проплавляет на глубине от 0.1 до 1 мм, макросварка способна спаять детали толщиной более 1 мм. В зависимости от положения деталей и лазерного луча, схема спайки может быть:

  • встык;
  • внахлест;
  • угловая;
  • прочие варианты.

Типы используемых лазеров

Установки для сварки лазером бывают твердотельные и газовые.

В твердотельной используется стержень из розового рубина, в котором ионы хрома нагреваются при облучении и отдают запасенную энергию.Концы рубинового основания покрывают серебром, которое имеет свойство отражать свет. Образуются полупрозрачные и прозрачные зеркала, от которых ионы хрома отбиваются и перемещаются вокруг рубинового стержня по спирали, задействуют следующие ионы и формируют беспрерывное действие. Случается энергетический взрыв, который движется через наполовину прозрачное стекло и собирается линзой в точку сварочного аппарата. Минус твердотельного лазера — работа только в беспрерывном режиме, а в импульсном очень низкий КПД (от 0.01 до 1%).

Если сравнивать газовый лазер и твердотельный, то у газового выше мощность и уровень КПД. Устройство такого лазера — круглая трубка, наполненная газом с обеих сторон, прижатая полупрозрачным и непрозрачным параллельными зеркалами. В трубке находятся электроды, между ними под воздействием разряда появляются резвые электроны, которые задействуют частицы газа. Когда они возвращаются в первоначальное состояние, образуются кванты света, которые собираются и направляются в место спайки. Огромным достоинством газовых лазеров является то, что они функционируют в обоих режимах: импульсном и беспрерывном.

Сварка сплавов большой толщины осуществляется с глубоким проплавлением, то есть формируется парогазовый канал, что весьма отличается от соединения металлов меньшей толщины. Для того чтобы при сварке не появлялись недостатки и шов был хорошего качества, подбирается необходимая мощность. Скорость 0.2-0.3 см/с обеспечивает высокую продуктивность и качественное скрепление деталей без дефектов.

Вернуться к оглавлению

Применение сварки лазером

Лазерные сварочные аппараты используются все чаще из-за качества, экологичности и скорости процесса.

Аппарат для лазерной сварки применяется:

  1. Для соединения стали. Такая сварка стали обеспечивает высокую прочность соединений, аккуратность швов, минимизацию коррозий, высокую скорость охлаждения. Перед началом сваривания конструкций необходимо подготовить кромки деталей: очистить от ржавчины окалины и удалить влагу. Подгоняют детали и части конструкции под сварку с наибольшей точностью. Как защитный газ используют чистый гелий или его смесь с аргоном.
  2. Для спайки металлических конструкций. Лазерная осуществляется с глубоким проплавлением. Важным приемом для этого является применение присадочного материала, что обеспечивает возможность регулировать состав шва, а также снизить требования к точности сборки частей конструкции под спайку. Особенность в том, что используется присадочная проволока в диаметре до 1 мм и правильная подача ее при помощи специальных механизмов под лазерное излучение. Если работать со скоростью 25-30 мм/с, то снижается количество деформаций, по сравнению с дуговой спайкой металлов. Основные достоинства соединения металла с глубоким проплавлением — мощное излучение, необходимая скорость сварки. Такое сильное излучение увеличивает способность проплавлять и формировать качественный шов. Обратите внимание, что лазерное излучение в диаметре должно быть от 0.5 до 1 мм. Если луч меньше указанного диаметра, это может привести к перегреву металла шва, частичному испарению его и образованию дефектов. Если же луч более 1 мм, то эффективность снижается в несколько раз, что может привести к преломлению шва.
  3. Для ремонта очков. Лазерная сварка очков — оптимальный способ починить оправы из различных металлов и сплавов. Место соединения получается крепким и однородным благодаря тому, что в сварке не используется припой. Процедура ремонта длится не более 20 минут, шов не загрязнен частицами припоя или электродов, а в месте соединения остается небольшой шов, который незаметен после шлифовки. Для ремонта очков необходимо выбрать правильное оборудование с нужной мощностью, так как маломощные лазеры не могут пропаять материалы с высокой теплопроводностью.
  4. Для ремонта ювелирных изделий. Лазерная пайка предоставляет возможность ремонта серебряных и золотых изделий максимально аккуратно, без деформации. Украшение не нагревается полностью при проведении работы, а только частично, в местах, которые необходимо соединить. Еще один плюс в том, что не нужно извлекать драгоценные камни из изделия, ведь при использовании лазерного излучения не нарушится целостность украшения.
  5. Для соединения алюминиевых, магниевых и титановых сплавов. выбираются для обеспечения нужной геометрии шва, предотвращения формирования холодных трещин и создания хорошего шва.

Вернуться к оглавлению

Ручная лазерная сварка

Уже существует оборудование для лазерной сварки, которое функционирует в ручном режиме. С его помощью можно производить своими руками:

  • точечную спайку;
  • ремонт ювелирных украшений;
  • уплотнение материалов только поверхностно;
  • обработку медицинского оборудования;
  • ремонт оправы очков.

Ручной сварочный аппарат может повысить продуктивность, ведь его скорость гораздо быстрее, а сварные изделия более высокого качества. Например, непрерывным лучом стальной лист толщиной 20 мм сваривается за 1 проход со скоростью 100 м/ч, а электрической дугой такой лист сваривают с быстротой в 20 м/ч за 6-8 проходов.

Не стоит забывать о том, что лазеры излучают мощный луч, который бывает видимый и невидимый. В большинстве случаев лазерный сварочный аппарат излучает невидимый луч инфракрасного света. Если не соблюдать меры предосторожности, то такой луч может попасть в глаза или на кожу.

Нужно выбирать качественное оборудование для сварки лазером, которое имеет правильную конструкцию, оснащено крышками для безопасности. Если тщательно соблюдать меры предосторожности, сварочный аппарат не будет опасным для вашего здоровья.

Ремонт ювелирных изделий и бижутерии с помощью новейших технологий. Применение лазерной сварки в ювелирной мастерской «САПФИР» для точечного ремонта маленьких, но значимых деталей женских и мужских украшений.

Как много модниц страдает, когда на их ювелирных изделиях ломается застежка или выпадает камушек. Ведь украшение еще можно носить, но как его отремонтировать? Оказывается, с помощью бесконтактного процесса лазерной ювелирной сварки можно отремонтировать любую поломку!

Как работает лазерная пайка – сварка лазером

Высокотехнологичные лазеры прочно заняли свое место среди оборудования ювелирных мастерских. Сварка металлов, производимая с помощью точного лазерного луча, стала отличным решением для ремонта деталей очков, ювелирных изделий и бижутерии.

Благодаря способности лазера мгновенно расплавлять и припаивать друг к другу самые, казалось бы, несовместимые материалы, получается очень крепкий и практически незаметный даже для искушенного глаза шов.

Лазерная пайка необходима там, где не может справиться ни один другой вид сварки:

  • При изготовлении и ремонте ювелирных изделий белого и красного цвета из платины, золота. Использование лазера позволяет соединять детали без припоя, который ранее был заметен при обычной сварке.
  • Для установки камней на их прежнее место – при помощи лазерной ювелирной пайки стало возможным изготовление новых лапок для камня.
  • При соединении разнородных металлов.

Преимущества использования лазерной сварки

Несмотря на довольно высокую стоимость такого оборудования, его использование давно оправдало себя. Лазерная сварка в Москве дала возможность производить ремонт изделий из любого материала с невероятной точностью и прочностью готовой детали. Кроме того, специалисты умело скрывают даже малейшие швы, оставшиеся после ремонта. Например, ювелиры мастерской «САПФИР» могут нанести гальваническое покрытие, полностью маскирующее минимальные следы производимого ремонта.

При лазерной сварке, требующей небольшого вмешательства (ремонте оправы очков, сломавшейся застежки бижутерии и других незначительных поломках) наша мастерская выполнит работу за короткое время. Более сложные сварочные работы, требующие кропотливого труда ювелира, обычно выполняются в течение суток.

Если вашему дорогому ювелирному изделию нужна лазерная сварка, узнать цену ремонта можно:

  • обратившись непосредственно в нашу мастерскую;
  • посмотрев прайс-лист

Решим любую проблему!

В том случае, когда другие ювелиры в Москве отказались ремонтировать украшение, не отчаивайтесь. Наши ювелиры при помощи лазерной пайки:

  • исправят любую поломку, даже самую ужасную;
  • дадут гарантию в 6 месяцев.

Москва – это огромный город, в котором работает много салонов по ремонту и продаже ювелирных украшений, но не все обладают достаточной квалификацией для ремонта очень дорогих украшений . Поэтому так важно обратиться к профессионалам, которые знают, что сварка лазерным лучом или любая другая ювелирная сварка должна быть выполнена так, чтобы изделие по завершению работ выглядело, как только что снятое с витрины!



Публикации по теме