Плюсы и минусы пневмоподвески. Насколько она хороша и стоит ли ее устанавливать. Пневматическая подвеска автомобиля – комфорт и безопасность в дороге

Пневматическая подвеска – небезызвестная разновидность , главная особенность которой сводится к возможности принудительно регулировать клиренс транспортного средства, то есть дорожный просвет посредством специальных упругих элементов. Система имеет достаточно сложное устройство и работает в сочетании с многочисленными датчиками. Например, датчик положения кузова будет указывать контроллеру на то, сколько нужно накачивать тот или иной вакуумный баллон.

Такое устройство пневмоподвески позволяет добиться максимально ровного положения транспорта относительно почвы.

Примечательно, что впервые пневматическая подвеска была запатентована еще в начале прошлого века, первую удачную версию удалось воплотить в реальность только под конец двадцатого столетия.

Сегодня она применяется не только в легковых авто, но и в грузовиках, полуприцепах и другой технике разных классов.

Как устроена

Пневматическая подвеска работает благодаря воздуху и специальному регулируемому элементу, который располагается сугубо внутри баллона и называется пневморессорой. Отдельно устанавливается датчик, который контролирует уровень давления и количество воздуха внутри каждого упругого элемента. Система управления нужна для обеспечения контроля работы всей системы в целом. Для этого приходится использовать большое количество датчиков, электроники, клапанов и модулей, применяемых для подачи воздуха.

Компрессор запитывается от электросети автомобиля, и именно с его помощью происходит накачивание всех пневматических баллонов. Многие современные системы дополнительно комплектуются рессиверами для облегчения управления, так как он нужен для резервного хранения воздуха. В итоге удается минимизировать нагрузку, которая приходится на компрессор.

Стоит отметить, что пневматический тип подвески любого современного автомобиля включает в себя корпус, штатную направляющую, резиновую манжету и один поршень.

Примечательно, что баллон может иметь встроенный амортизатор, а может и нет. В ряде случаев он устанавливается отдельно.

В качестве сырьевого материала для изготовления манжеты применяют эластомер. По сути это усиленная резина, которая обладает высокими техническими характеристиками. Такое решение существенно продлевает эксплуатационный срок конструкции.

Во многих современных типах подвески часто используют электронные датчики и герметичные клапаны давления внутри баллонов. Пневматическая подвеска любого автомобиля не является какой-то особенной системой. В большинстве случаев ее интегрируют в уже привычные всем конструкции подвесок, добавляя необходимые датчики для корректной работы пневмоподвески.

Какой может быть

Устройство подвесок может быть разным. Например, одноконтурные виды применяются зачастую в грузовых автомобилях и тягачах. Монтируется подвеска строго на одну ось, чаще всего именно на заднюю. Это дает возможность регулировать жесткость срабатывания в зависимости от загруженности автомобиля. Количество датчиков здесь минимально.

Устройство двухконтурных пневмоподвесок таково, что они могут устанавливаться на одну ось и на обе соответственно. Если же данная конструкция будет установлена на одной оси, то это дает возможность сразу регулировать положение двух колес. Такое расположение на практике встречается довольно часто. Если подвеска такого типа устанавливается на две оси, то работает она как две независимые системы. Управление не требует использования большого количества датчиков, благодаря чему обслуживание подвески автомобиля упрощается.

Четырехконтурная пневмоподвеска автомобиля устроена и работает по самой сложной схеме. Она такова, что каждое колесо, а точнее его работа регулируется в индивидуальном порядке. Плюсы такой конструкции очевидны, но имеют место и минусы. Система работает совместно с электронным независимым блоком управления, который при помощи ряда датчиков считывает информацию с каждого баллона. Такая подвеска автомобиля очень долговечна, если ее своевременно обслуживать.


Достоинства и существенные недостатки

Плюсы пневпомодвески очевидны, например, машина всегда сохраняет максимальную плавность хода. Минусы тоже присутствуют, например, довольно высокая стоимость обслуживания и ремонта. Схема работы конструкции понятна многим, но вот когда возникает надобность отремонтировать или заменить какой-либо упругий элемент, нужно быть готовым к большим финансовым вложениям. Манжеты стоят довольно дорого, а при их интенсивной эксплуатации в пределах нашей страны они быстро выходят из строя. Если использовать авто при низких температурах, то рабочий ресурс конструкции существенно сократится. Едкие дорожные реагенты также могут негативно отразиться на сроке службы такой системы.

Самостоятельно ремонтировать отдельные узлы такого вида подвесок нельзя, так как для этого придется использовать специальное оборудование, стоимость которого довольно велика.

Дабы оградить себя от лишних затрат, нужно своевременно посещать автосервисы для проведения диагностических работ. На практике можно быть уверенным, что эта подвеска будет лучше обычной рычажной, но, если покупаете старое авто, нужно удостовериться в состоянии этого узла.


Подведем итоги

Как видите, пневматическая подвеска – это не новейшее изобретение, а уже многим знакомая технология, которая довольно трудна в эксплуатации. Схема устройства достаточно сложная, особенно, если речь идет про современные автомобили. Стоимость ремонта и планового обслуживания велика и это главный недостаток, который всегда приходится брать во внимание. В остальном это очень практичная система, которая не требует к себе особого внимания. Все что нужно, время от времени проверять работоспособность датчиков, компрессора и других составляющих, обеспечивающих правильную работу подвески.

Пневматическая подвеска – это разновидность подвески, которая позволяет (то есть высоту кузова относительно дорожного полотна) за счет пневматических упругих элементов.

Несмотря на то, что патенты на пневматические подвески появились еще в начале XX века, первые попытки создать удачную конструкцию успехом не увенчались

Применяется на грузовиках, полуприцепах, а также на внедорожниках и многих моделях бизнес-класса.

История и особенности конструкции пневмоподвески

Первым по-настоящему массовым автомобилем с пневматической подвеской стал , появившийся на рынке в 1955 году. Несмотря на то, что патенты на пневматические подвески появились еще в начале XX века, первые попытки создать удачную конструкцию и массово внедрить ее в производство успехом не увенчались. Что же до автомобиля Citroen, то на всех его колесах были установлены регулируемые поршневые пневморессоры.В 1957 году в США появилась новая модель Cadillac Eldorado, также оснащенная пневморессорами, но уже на основе резиново-кордных оболочек (в отличие от Citroen, применявшего телескопические поршневые рессоры).Подвеска такого же типа, как у Cadillac, была установлена и на Mercedes-Benz 300 CE, продажи которого начались в 1961 году. И именно эта модель оказалась последней из легковых автомобилей, на которые устанавливалась пневмоподвеска данного типа. Интерес к резиново-карданным оболочкам в конструкции подвесок легковых автомобилей возродился относительно недавно, когда появились возможности для сочетания ее с электронными системами управления.

Устройство пневмоподвески

В качестве основного ресурса, необходимого для работы такого типа подвески, используется воздух, находящийся внутри регулируемого элемента – пневморессоры (или пневматического упругого элемента, как ее еще называют). Упругость этой конструкции достигается за счет изменения уровня давления и количества воздуха внутри нее. Нужный уровень контролируется с помощью системы управления, специальной электроники, датчиков, системы клапанов и модуля подачи воздуха – компрессора, который за счет электросети автомобиля нагнетает воздух внутрь упругих элементов «пневмы».Кроме того, помимо модуля подачи воздуха, на пневмоподвеску часто устанавливают ресивер – специальный резервуар для хранения запасов воздуха, который используется на небольшой скорости, чтобы не приходилось лишний раз гонять воздух с помощью компрессора.

Все современные пневмоподвески можно разделить на три основных типа: одно-, двух- и четырехконтурные

Пневморессора состоит из корпуса с направляющей, манжеты и поршня. Пневматический упругий элемент может изготавливаться как со встроенным амортизатором, так и устанавливаться отдельно. Манжета изготавливается из прочного многослойного эластомера, или, проще говоря, из усиленной резины. Иногда на дорогих автомобилях для поддержания давления в случае утечки воздуха в упругом элементе монтируют клапаны остаточного давления. По сути, пневмоподвеска не является отдельным видом подвески автомобиля. Связано это с тем, что она чаще всего интегрирована в уже имеющуюся стандартную конструкцию, будь то , или .

Разновидности пневматических подвесок

Все современные пневмоподвески можно разделить на три основных типа: одно-, двух- и четырехконтурные.Одноконтурная пневматическая подвеска – это удел, в первую очередь, грузовиков и седельных тягачей. Она устанавливается на одну ось (чаще – заднюю) и регулирует ее жесткость в зависимости от массы груза на авто.Двухконтурная может устанавливаться как на одну ось, так и на две. Если она установлена на одной оси, она отвечает за независимое регулирование обоих колес, если же на двух, то действует как две одноконтурные системы.Четырехконтурная (самая сложная) разновидность пневматической подвески осуществляет регулировку каждого колеса по отдельности. Чаще всего в четырехконтурных системах присутствует электронный блок управления, который с помощью датчиков регулирует давление в пневмоэлементах.

Современные пневматические подвески

Как правило, современные системы управления одновременно реализуют три алгоритма работы «пневмы». Во-первых, принудительное изменение уровня кузова: в этом случае клиренс и жесткость подвески автомобиля регулируется водителем вручную с помощью специальных регулирующих устройств. На «лоурайдеры» (автомобили с низкой посадкой) устанавливается подвеска как раз с таким типом алгоритма, который, зачастую, исключает все остальные указанные ниже варианты ее работы.

В США есть целая автомобильная культура, сконцентрированная на использовании пневматических и гидравлических подвесок при доработке автомобилей и превращении их в так называемые «лоурайдеры»

Во-вторых, автоматическое поддержание уровня кузова. В данном случае речь идет о полностью автоматической регулировке клиренса или жесткости подвески автомобиля с помощью электроники, поддерживающей заданный уровень кузова автомобиля независимо от его загруженности.Наконец, в-третьих, автоматическое изменение уровня кузова в зависимости от скорости автомобиля, что обеспечивает устойчивость авто в движении. При наборе скорости, программа управления автоматически уменьшает клиренс. При торможении, кузов автомобиля возвращается в исходное заданное положение.Сегодня управляемые пневматические подвески применяют многие ведущие автопроизводители из США, Европы и Японии, среди них такие известные марки, как Audi, BMW, Volkswagen, Mercedes-Benz, Ford, GM, Land Rover, Lexus, Subaru и SsangYong. Помимо прочего, в США существует целая автомобильная культура, сконцентрированная на использовании пневматических и гидравлических подвесок при доработке автомобилей и превращении их в так называемые «лоурайдеры» - «танцующие» автомобили или буквально лежащие «на брюхе».

Плюсы и минусы пневматической подвески

Основное преимущество использования пневмоподвески заключается в том, что автомобиль сохраняет великолепную плавность хода, при этом не «клюет» носом при торможении, не кренится в крутых поворотах, на большой скорости становится устойчивее и лучше держит дорогу.Из недостатков можно выделить лишь сильный износ резиновых оболочек-манжет (особенно при эксплуатации в России) и их высокую стоимость. Кроме того, пневматическая подвеска очень чувствительна к условиям эксплуатации: ее ресурс могут резко сократить низкие температуры или чересчур «едкие» дорожные реагенты.

Многие из нас слышали такой термин, как пневматическая подвеска или пневмоподвеска, но что это такое знают не многие. Часто такое устройство используют на грузовом транспорте, а также в автомобилях бизнес-класса, внедорожниках. Однако, все чаще такие подвески стали устанавливать на легковых авто. Так что же такое пневмоподвеска, плюсы и минусы данного устройства, типы и конструкция, мы сегодня изучим.


Расположение узлов пневмоподвески в автомобиле


При помощи пневматической подвески можно регулировать дорожный просвет (клиренс) автомобиля.

Итак, что такое пневмоподвеска в автомобиле? Согласно техническому описанию данного устройства пневмоподвеской называют такой тип подвески транспортного средства, при использовании которой можно регулировать просвет () между дорожным полотном и днищем машины. Расстояние можно менять как автоматически, так и принудительно.
Пневморессоры дают возможность:

  • регулировать клиренс авто;
  • регулировать жесткость рессор, что позволяет улучшить устойчивость и управляемость автомобиля, снизить крены при поворотах;
  • выравнивать автомобиль при неравномерной нагрузке одной из частей машины.

Как видите, такая регулируемая подвеска позволяет «подстраивать» автомобиль под дорожное полотно и передвигаться практически по бездорожью.

Почему именно пневмоподвеска


Такие трюки можно делать только на пневмоподвеске


Пневмоподвеска имеет пневматические упругие элементы, которые способны удерживать клиренс в не зависимости от изменений веса авто.

Чтобы понять преимущества данного устройства, прежде всего, необходимо разобраться в конструкции и понять отличия пневмоподвески от обычной. В классической подвеске главным элементом, принимающим на себя все неровности дорожного полотна и передающим нагрузку на кузов авто является металлические упругие элементы. К ним относят пружины, рессоры и торсионы. В противовес стандартной подвеске, устройство пневмоподвески автомобиля отличается наличием пневматических упругих элементов, которые способны удерживать клиренс в не зависимости от изменений веса авто, делая, при необходимости, «жесткую» пневмоподвеску. Обеспечивается такая функция с помощью регулировки объема и давления воздуха в упругих элементах.

Конструктивные отличия

Пневмоподвеска на любой автомобиль состоит со следующих частей:

  • пневмоэлементы;
  • резервуар для сжатого воздуха или ресивер;
  • системы для распределения воздуха;
  • системы управления.

Пневмоэлементами в данной системе являются пневмобаллоны, выпускаемые в трех основных ваидах:

  • double-convoluted. Оптимальный вариант для установки на более загруженную ось авто. Поскольку имеет большую грузоподъемность, короткий ход, современные технические характеристики;
  • rolling-sleeve и tapered-sleeve. Отличаются меньшей грузоподъемностью, меньшим сечением баллона и линейную характеристику. Зачастую они устанавливаются на заднюю ось авто.

Разнообразие видов


Разновидности пневмоподвески автомобиля

Если ваша машина не имела заводской пневмоподвески, но у вас появилось желание провести установку пневмоподвески своими руками, тогда немаловажным будет изучить разнообразие пневматических подвесок. Итак, основные виды пневмоподвесок:

Стоимость комплекта пневмоподвески зависит не только от её типа, но и от класса транспортного средства, на который она будет устанавливаться.

  • одноконтурные. Предназначены для одного контура (оси), давление в обеих подушках оси будет одинаковым;
  • двухконтурные на двух осях. Аналогичны одноконтурным, просто устанавливаются на обе оси машины, позволяя регулировать переднюю и заднюю часть автомобиля;
  • двухконтурные на одной оси. Позволяет проводить регулирование всех четырех колес отдельно;
  • четырехконтурные. Самый оптимальный, дорогостоящий и функциональный вид пневмоподвесок.

Стоит понимать, что стоимость комплекта пневмоподвески будет зависеть не только от её типа, но и класса транспортного средства, на который она будет устанавливаться.

На какой автомобиль можно установить пневмоподвеску

Согласно опыту и заверений мастеров установить пневматическую подвеску можно практически на любое транспортное средство, поскольку по сути меняется только сама металлическая пружина. Главное — подобрать пневмоподвеску по автомобилю и пожеланиям владельца, исходя из дальнейшей эксплуатации автомобиля. Главный минус пневмоподвески – установка, цена на нее достаточно большая. Единственный способ сэкономить - проводить работы самостоятельно.

Делаем все сами


Задняя пневмоподвеска с самодельным креплением

Прежде чем установить пневмоподвеску на легковой автомобиль обязательно проверьте есть ли все необходимое в наличии:

Во время установки пневмоподвески следует четко придерживаться инструкции по монтажу устройства.

  • пневматические подушки, которые заменят пружины;
  • ресивер пневмоподвески;
  • датчики, которые будут контролировать давление внутри системы и высоту клиренса;
  • блок управления пневмоподвески, он будет управлять и контролировать работу датчиков и системы в целом;
  • манометр.

Обратите внимание, что следует четко придерживаться инструкции по монтажу устройства.
Крепления для подвески оптимально заказать у токаря, подгоняя их под «родные» для машины. Это позволит, при необходимости, опять установить старую подвеску.
Чтобы получить удовлетворение от работы при самостоятельном монтаже пневмоподвески, запомните несколько важных моментов:

  • пневмобаллон должен быть максимально прочным, поскольку именно на него ложиться вес автомобиля. Также обязательно проверьте его герметичность;
  • без ресивера вам не обойтись, иначе придется использовать компрессор пневмоподвески большой мощности, а это чревато большими расходами энергии;
  • правильно подбирайте тип подвески.

Уход за пневмоподвеской


Передняя пневмоподвеска автомобиля

Для нормальной работы пневмоподвески необходимо регулярно проводить её обслуживание. Во время технических работ необходимо обращать внимание на такие тонкости:

Для нормальной работы пневмоподвески необходимо регулярно проводить её обслуживание.

Положение каждого отдельного колеса определяется не с помощью пружин, а посредством сжатого воздуха, необходимое количество которого быстро подводится или отводится через электромагнитные клапаны к имеющим особую конструкцию амортизаторам.

Рис. Пневматическая подвеска:
1 – блок управления подвеской; 2 – блок управления двигателем; 3, 6 – задняя стойка с пневмоэлементом; 4 – правый задний датчик положения кузова; 5 – компрессор пневмоподвески; 7 – датчик ускорения кузова; 8, 13 – датчик ускорения колеса; 9 – левый задний датчик положения кузова; 10 – ресивер; 11 – левый передний датчик положения кузова; 12, 16 – передняя стойка с пневмоэлементом; 14 – правый передний датчик положения кузова; 15 – блок управления АБС

Узлы и механизмы пневматической подвески

  • передних и задних пневматических амортизационных стоек
  • компрессора
  • ресивера
  • блока управления и датчиков, информирующих блок управления о скорости движения, нагрузке автомобиля и угле поворота рулевого колеса

Узлы и механизмы подвески соединены друг с другом воздушными магистралями и подключены в электрическую систему автомобиля с помощью многофункциональной шины электронной передачи данных CAN. Подвеска автоматически активизируется, как только открывается дверь автомобиля. Таким образом, еще до начала движения корректируются клиренс и упругость .

После этого в работу подвески имеет право вмешаться и сам водитель, который, во-первых, может установить нужный дорожный просвет, подняв или опустив , что, например, пригодится для более удобной загрузки багажника либо присоединения прицепа. Во-вторых, можно выбрать режим – комфортный или спортивный, в котором будет работать подвеска во время движения. Режим «комфорт» позволяет водителю и пассажирам буквально «парить» над дорогой. Режим «спорт» улучшает устойчивость и безопасность на больших скоростях движения. Вместе с тем индивидуальное регулирование жесткости амортизаторов на каждом колесе по отдельности позволяет учитывать крен кузова и скорость, с которой автомобиль входит в поворот, оценивать угол поворота и скорость, с которой водитель поворачивает руль. Тем самым жесткость амортизационных стоек может автоматически изменяться в движении так, что будет найден самый оптимальный и эффективный режим работы подвески, адекватно отвечающий конкретным дорожным условиям как с точки зрения безопасности, так и комфортности. Например, при торможении передние колеса будут подрессориваться более жестко, чем задние, а при ускорении — наоборот, но это в обоих случаях позволит избежать неприятного продольного «клевка» кузова.

Пневматическая подвеска автоматически приспосабливается к различной загрузке автомобиля и способна выбирать величину дорожного просвета, ориентируясь на дорожные условия.


Рис. Последовательность процессов автоматического повышения и снижения уровня кузова (на примере Вольксваген Фаэтон): HN – повышенный уровень; NN – номинальный уровень; TN – пониженный уровень

Номинальный уровень дорожного просвета устанавливается и автоматически поддерживается постоянным при движении со скоростью 80 км/ч и выше, а также во время быстрого разгона до скорости 120 км/ч.

Автоматическое снижение уровня дорожного просвета до номинального (NN) на 25 мм при повышенном уровне HN происходит при скоростях более 120 км/ч. Если уровень был номинальным (NN), снижение уровня дорожного просвета до пониженного (TN) на 15мм ниже номинального происходит через 30 с после превышения скорости 140 км/ч или менее чем через 30 с, если скорость достигнет 180 км/час. Понижение центра тяжести делает автомобиль более устойчивым, а также одновременно улучшает аэродинамические характеристики, что в свою очередь значительно снижает расход топлива

Автоматическое повышение уровня дорожного просвета от пониженного (TN) до номинального (NN) происходит через 60 с после снижения скорости до 100 км/ч или менее чем через 60 с, если скорость станет менее 80 км/час.

Чтобы выбрать уровень дорожного просвета кузова, следует нажать предназначенную для этого клавишу и на дисплей выводится изображение, соответствующее выбранному уровню кузова (повышенный HN или номинальный NN). Номинальный дорожный просвет устанавливается по умолчанию.

Уровень дорожного просвета кузова определяется четырьмя датчика уровня кузова, установленными между подрамниками и нижними рычагами подвески. Результаты измерений сравниваются с заданными величинами, сохраняемыми в памяти блока управления. Заданные величины вводятся в память для каждого автомобиля индивидуально.

Воздух, необходимый для регулирования подвески, обычно подается компрессором под давлением до 16 кгс/см2. Компрессор обеспечивает регулирование уровня кузова при скоростях автомобиля свыше 35 км/ч. При необходимости сжатый воздух подается также в ресивер. При скоростях ниже 35 км/ч регулирование уровня кузова осуществляется за счет подачи воздуха из ресивера.

Если дорожный просвет автомобиля изменяется в результате его загрузки или разгрузки, блок управления включает систему регулирования, возвращающую кузов на первоначально заданный уровень. При этом подача воздуха из упругих элементов производится через соответствующие им электромагнитные клапаны, а выпуск из них осуществляется через выпускной клапан.

Основной составляющей пневматической подвески является пневматический упругий элемент, который состоит из:

  • корпуса с наружной направляющей
  • манжеты
  • поршня (являющегося нижней частью корпуса элемента)
  • дополнительного пневмоакумулятора (в некоторых конструкциях)
  • встроенного амортизатора

Рис. Пневматический упругий элемент:
1 – наружная направляющая манжеты; 2 – воздушная полость; 3 – верхняя часть корпуса; 4 – газовая полость амортизатора; 5 – манжета; 6 – двухтрубный гидравлический амортизатор; 7 – компенсационная полость амортизатора; 8 – поршень

Манжета пневматического упругого элемента изготовляется из специального многослойного высококачественного эластомера, армированного полиамидной кордовой тканью, которая придает ему необходимую прочность. Корд воспринимает усилия, передаваемые на упругий элемент. Изнутри манжета покрыта защитным слоем, обеспечивающим ее герметичность. Комбинацией слоев корда достигается необходимая гибкость манжеты при ее перекатывании и высокая чувствительность упругого элемента к изменению нагрузки.

Блок управления оснащен двумя дублирующими друг друга процессорами, из которых один в первую очередь отрабатывает алгоритм управления пневматическими элементами, а другой регулирует сопротивление амортизаторов.

Система регулирования сопротивления амортизаторов обрабатывает сигналы четырех датчиков ускорений колес и трех датчиков ускорений кузова и оценивает по результатам этой обработки состояние дороги и движения автомобиля. В результате производится изменение характеристик каждого из амортизаторов в соответствии с рассчитанной интенсивностью гашения колебаний. При этом амортизаторы работают на ходах сжатия и отдачи как полуактивные компоненты. Бесступенчатое регулирование демпфирования производится благодаря применению амортизаторов, характеристики которых изменяются посредством электрических исполнительных устройств. Эти амортизаторы встроены в стойки с пневматическими упругими элементами. Силы сопротивления амортизатора регулируются посредством встроенного в него пропорционально действующего (электромагнитного) клапана. Регулирование производится по многопараметровой характеристике. Изменение сопротивления амортизаторов в зависимости от характера движения автомобиля и состояния дороги производится в течение нескольких миллисекунд.

Принципиально изменение сопротивления амортизаторов производится в соответствии с так называемой «стратегией подвески к небу». Регулирование амортизаторов производится в зависимости от вертикальных ускорений колес и кузова автомобиля. В идеальном случае регулирование осуществляется таким образом, как будто кузов автомобиля подвешен на крюке к небу и плывет над дорогой, практически не повторяя неровностей дороги. Так достигается максимальная комфортабельность автомобиля.

Двухтрубный газонаполненный амортизатор типа CDC (амортизатор с гидравлическим демпфированием) оснащен встроенным в поршень или установленным снаружи амортизатора электромагнитным клапаном, который позволяет изменять степень демпфирования амортизатора. Изменением тока, проходящего по обмотке электромагнитного клапана, можно в течение нескольких миллисекунд изменить его проходное сечение и, следовательно, сопротивление амортизатора в соответствие с текущей потребностью.

Рис. Амортизатор с регулируемым сопротивлением перетекания жидкости:
1 – дополнительные клапана; 2 – цилиндр амортизатора; 3 – корпус амортизатора; 4 – корпус клапана; 5 – кабель подвода тока; 6 – полый шток поршня; 7 – обмотка электромагнитного клапана; 8 – якорь; 9 – пружина клапана; 10 – главный клапан амортизатора; 11 – потоки рабочей жидкости

Расчет потребного сопротивления амортизаторов при данных условиях движения автомобиля производится на основании сигналов датчиков всех ускорений колес автомобиля, установленных на каждом из амортизаторов, и датчиков ускорений кузова. Благодаря высокой скорости распознавания и регулирования процессов демпфирования при ходе сжатия и отдачи обеспечивается установка характеристики сопротивления амортизатора строго в соответствии с моментальным состоянием движения автомобиля. Многопараметровые зависимости сопротивления амортизаторов от условий движения автомобиля записаны в памяти блока управления уровнем кузова.

Чтобы выбрать настройку амортизаторов, следует нажать предназначенную для этого клавишу. Вращая поворотно-нажимную ручку, можно выбрать один из четырех вариантов настройки амортизаторов:

  • «Комфорт»
  • базовый (устанавливается по умолчанию)
  • спортивный вариант

Сжатие воздуха производится в компрессоре (на примере Фольксваген Фаэтон). Компрессор одноступенчатый поршневой с встроенным осушителем воздуха. Чтобы предотвратить загрязнение манжет упругих элементов и осушителя воздуха, компрессор приспособлен для работы без смазки его цилиндра. Необходимый срок службы компрессора обеспечивается применением одноразовой смазки подшипников и фторопластового поршневого кольца.


Рис. Компрессор (на примере Фольксваген Фаэтон):
1 – выпускной клапан; 2 – пневматический выпускной клапан; 3, 5, 12 – обратные клапана; 4 – осушитель воздуха; 6 – цилиндр; 7 – мембранный клапан (в закрытом положении); 8 – поршневое кольцо; 9 – поршень; 10 – впускной штуцер; 11 – электродвигатель; 13 – выпускной штуцер; 14 – нагнетательный штуцер; 15 – ограничительный клапан

В корпусе осушителя расположены выпускной трехходовой, двухпозиционный клапан 1, пневматический выпускной клапан 2 с ограничительным клапаном и три обратных клапана. Выпускной клапан в обесточенном состоянии закрыт. Пневматический выпускной клапан ограничивает давление в системе и поддерживает остаточное давление в ней.

Перегрев компрессора предотвращается выключением электродвигателя при превышении предельного значения температуры.

При ходе поршня к ВМТ воздух всасывается в картер через глушитель шума всасывания с фильтром и впускной штуцер 10. Воздух, находящийся в цилиндре над поршнем, сжимается и перепускается через обратный клапан 5 в осушитель. Сжатый и осушенный воздух направляется через обратный клапан 12 и нагнетательный штуцер 14 к распределительным клапанам и к ресиверу.

При движении поршня к НМТ поступивший в картер воздух перепускается через мембранный клапан 7 в цилиндр компрессора.

Подкачка подвески и повышение уровня кузова

Для подкачки подвески и подъема кузова блок управления одновременно переключает реле компрессора и клапанов пневматических упругих элементов. Воздух при этом через выпускной штуцер 13 поступает через клапана упругих элементов в воздушную полость упругого элемента.

Выпуск воздуха из подвески и снижение уровня кузова

Для выпуска воздуха из подвески производится открытие клапанов пневматических элементов и выпускного клапана 1, в обмотку которого подается напряжение. При этом воздух из упругих элементов поступает к пневматическому выпускному клапану 2 и направляется далее через осушитель, ограничительный клапан 15 и глушитель шума всасывания с фильтром в нишу багажника автомобиля, предназначенную для размещения запасного колеса.

Осушитель воздуха

Поступающий в систему сжатый воздух должен быть обезвожен, так как конденсат вызывает коррозию и образование ледяных пробок. Обезвоживание воздуха производится в осушителе. Осушитель работает в режиме регенерации, то есть воздух, нагнетаемый в систему регулирования уровня кузова, осушается в результате пропуска его через гранулированный силикат. Этот гранулят способен поглощать влагу в количествах, превышающих в зависимости от температуры 20% собственной массы. Если в процессе эксплуатации (например, при снижении уровня кузова) производится выпуск сухого воздуха из системы, он пропускается через гранулят и отбирает накопленную в нем влагу. Благодаря такому режиму регенерации осушитель не нуждается в обслуживании и не подлежит также замене в процессе эксплуатации.

Ресивер

Благодаря отбору сжатого воздуха из ресивера обеспечивается быстрый подъем кузова автомобиля при минимальном уровне шума. Ресивер заполняется только при движении автомобиля, благодаря чему шум компрессора практически не прослушивается. При достаточно большом давлении в ресивере повышение уровня кузова может осуществляться без компрессора. Под достаточным давлением подразумевается такой его уровень, при котором обеспечивается перепад давления между ресивером и пневматическими упругими элементами не менее 3 кгс/см2. При скоростях автомобиля до 35 км/ч подача воздуха в систему производится в первую очередь из ресивера (пока давление в нем достаточно велико). При скоростях более 35 км/ч воздух в систему подается непосредственно компрессором. Такая система подачи сжатого воздуха способствует снижению шума при эксплуатации и защищает аккумуляторную батарею от чрезмерного разряда.

Датчики уровня кузова

Такие датчики относятся к измерителям угла поворота. Кинематика соединительных штанг позволяет преобразовать изменения уровня кузова в угловые перемещения рычагов датчиков. В датчике угловых перемещений данного типа используется закон электромагнитной индукции. На выводах датчика создается сигнал (широтно-импульсной модуляции), который пропорционален углу поворота его оси.

Важнейшими деталями датчика являются статор и ротор. Статор образован многослойной платой, содержащей катушку возбуждения, три приемные катушки, а также блок управления и обработки результатов измерений. Три приемные катушки смещены относительно друг друга, образуя звезду. Катушка возбуждения перекрывает приемные катушки с обратной стороны платы.

Ротор жестко соединен с рычагом датчика. На роторе выполнена замкнутая токопроводящая петля. Форма этой петли соответствует форме трех приемных катушек.

Через катушку возбуждения проходит переменный ток, который создает вокруг нее переменное электромагнитное поле (поле 1). Это поле пронизывает токопроводящую петлю ротора. Индуцируемый в токопроводящей петле ротора ток также создает вокруг нее переменное электромагнитное поле (поле 2).

Рис. Принцип действия датчика уровня кузова.

Переменные поля, создаваемые катушкой возбуждения и ротором, действуют на три приемные катушки и индуцируют в них переменные напряжения, величина которых зависит от взаимного положения катушек и ротора. Индуцируемый в роторе ток не зависит от его углового положения, а индуцируемое в приемных катушках напряжение изменяется в зависимости от их положения относительно ротора. Таким образом, это напряжение определяется угловым положением ротора. Так как ротор при повороте в разной степени перекрывает приемные катушки, амплитуды индуцируемых в них напряжений зависят от угла его поворота.


Рис. Амплитуды напряжений на выводах приемных катушек в зависимости от положения ротора

В электронном блоке производится выпрямление и усиление индуцируемых в приемных катушках напряжений, величины которых затем сопоставляются друг с другом. Результаты этого сопоставления преобразуются в выходные сигналы чувствительного элемента датчика уровня кузова, которые направляются для дальнейшей обработки блоками управления подвески.

Датчики ускорения. Датчики ускорений кузова и колес имеют аналогичную конструкцию. Принцип действия датчиков ускорений основан на измерении электрических емкостей. Между пластинами конденсатора колеблется упруго подвешенная масса m, выполняющая функции центрального электрода. Емкости конденсаторов C1 и C2 изменяются синхронно с колебаниями массы. Расстояние d1 между пластинами одного конденсатора увеличивается настолько, насколько уменьшается расстояние d2 другого конденсатора. В результате изменяются емкости обеих конденсаторов. После электронной обработки данных измерений на блок управления уровнем кузова подается напряжение в качестве аналогового сигнала.

Рис. Емкостной датчик для измерения ускорений

Кроме амортизаторов с гидравлическим демпфированием на легковых автомобилях применяются амортизаторы PDC (Pneumatic Damping Conrol) с пневматическим демпфированием.


Рис. Амортизатор с пневматическим регулированием демпфирования:
1 – донный клапанный узел; 2 – узел PDC; 3 – дроссель в воздушном канале; 4 – первая рабочая камера; 5 – упорный буфер; 6 – газ; 7 – отверстия; 8 – поршневой клапанный узел с уплотнительной манжетой; 9 – вторая рабочая камера; 10 – поршень PDC; 11 – клапан PDC; а – клапан открыт; б – общий вид; в – клапан закрыт

Усилие демпфирования может варьироваться в зависимости от давления в пневмобаллоне при помощи отдельного узла PDC 2, встраиваемого в амортизатор. Узел соединен шлангом с пневматическим упругим элементом. Пропорциональное нагрузке давление в пневматическом упругом элементе передвигает клапан 11, соединенный с поршнем 10, изменяя гидравлическое сопротивление между первой и второй рабочими камерами, т. е. усилие демпфирования при отбое и сжатии. Чтобы сгладить скачки давления в пневматическом упругом элементе (при сжатии и отбое), во входной воздушный канал клапана PDC встроен дроссель 3.

Первая рабочая камера с помощью отверстий 7 соединена с узлом PDC. При низком давлении в пневматическом упругом элементе (условия нагрузки – снаряженный или имеющий небольшую частичную нагрузку автомобиль) клапан PDC имеет малое гидравлическое сопротивление, благодаря чему часть масла направляется в обход соответствующего демпфирующего клапана, уменьшая усилие демпфирования.

При ходе и низком давлении в пневматическом упругом элементе отбоя поршень идет вверх, часть масла дросселируется через клапана поршня амортизатора, другая часть перетекает через отверстия в первой рабочей камере к клапану PDC. Если управляющее давление (давление в пневматическом упругом элементе) и, следовательно, гидравлическое сопротивление клапана PDC малы, то усилие демпфирования уменьшается.

При ходе отбоя и высоком давлении в пневматическом упругом элементе управляющее давление закрывает клапан 11 полностью или частично, следовательно, гидравлическое сопротивление повышается. Большая часть масла (в зависимости от величины управляющего давления) должна дросселироваться через клапана поршня амортизатора, частично перетекая или совсем не перетекая через отверстия в первой рабочей камере к клапану PDC, усилие демпфирования при этом повышается.

(оцени первым)

Продолжаем познавательную страничку.

Пневматическая подвеска

История, устройство и преимущества пневмоподвески:

Пневматическая подвеска – это разновидность подвески, которая позволяет регулировать клиренс (то есть высоту кузова относительно дорожного полотна) за счет пневматических упругих элементов.

Несмотря на то, что патенты на пневматические подвески появились еще в начале XX века, первые попытки создать удачную конструкцию успехом не увенчались

Применяется на грузовиках, полуприцепах, а также на внедорожниках и многих моделях бизнес-класса.

История и особенности конструкции пневмоподвески:

Первым по-настоящему массовым автомобилем с пневматической подвеской стал знаменитый Citroen DS-19 , появившийся на рынке в 1955 году. Несмотря на то, что патенты на пневматические подвески появились еще в начале XX века, первые попытки создать удачную конструкцию и массово внедрить ее в производство успехом не увенчались. Что же до автомобиля Citroen , то на всех его колесах были установлены регулируемые поршневые пневморессоры.

В 1957 году в США появилась новая модель Cadillac Eldorado , также оснащенная пневморессорами, но уже на основе резиново-кордных оболочек (в отличие от Citroen, применявшего телескопические поршневые рессоры) .

Подвеска такого же типа, как у Cadillac , была установлена и на Mercedes-Benz 300 CE , продажи которого начались в 1961 году. И именно эта модель оказалась последней из легковых автомобилей, на которые устанавливалась пневмоподвеска данного типа. Интерес к резиново-карданным оболочкам в конструкции подвесок легковых автомобилей возродился относительно недавно, когда появились возможности для сочетания ее с электронными системами управления.

Устройство пневмоподвески:

В качестве основного ресурса, необходимого для работы такого типа подвески, используется воздух, находящийся внутри регулируемого элемента – пневморессоры (или пневматического упругого элемента, как ее еще называют) . Упругость этой конструкции достигается за счет изменения уровня давления и количества воздуха внутри нее. Нужный уровень контролируется с помощью системы управления, специальной электроники, датчиков, системы клапанов и модуля подачи воздуха – компрессора, который за счет электросети автомобиля нагнетает воздух внутрь упругих элементов «пневмы».

Кроме того, помимо модуля подачи воздуха, на пневмоподвеску часто устанавливают ресивер – специальный резервуар для хранения запасов воздуха, который используется на небольшой скорости, чтобы не приходилось лишний раз гонять воздух с помощью компрессора.

Пневморессора состоит из корпуса с направляющей, манжеты и поршня. Пневматический упругий элемент может изготавливаться как со встроенным амортизатором, так и устанавливаться отдельно. Манжета изготавливается из прочного многослойного эластомера, или, проще говоря, из усиленной резины. Иногда на дорогих автомобилях для поддержания давления в случае утечки воздуха в упругом элементе монтируют клапаны остаточного давления. По сути, пневмоподвеска не является отдельным видом подвески автомобиля. Связано это с тем, что она чаще всего интегрирована в уже имеющуюся стандартную конструкцию, будь то подвеска МакФерсон, «многорычажка» или рессорная конструкция.

Разновидности пневматических подвесок:

Все современные пневмоподвески можно разделить на три основных типа: одно-, двух- и четырехконтурные.

Одноконтурная пневматическая подвеска – это удел, в первую очередь, грузовиков и седельных тягачей. Она устанавливается на одну ось (чаще – заднюю) и регулирует ее жесткость в зависимости от массы груза на авто.

Двухконтурная может устанавливаться как на одну ось, так и на две. Если она установлена на одной оси, она отвечает за независимое регулирование обоих колес, если же на двух, то действует как две одноконтурные системы.

Четырехконтурная (самая сложная) разновидность пневматической подвески осуществляет регулировку каждого колеса по отдельности. Чаще всего в четырехконтурных системах присутствует электронный блок управления, который с помощью датчиков регулирует давление в пневмоэлементах.

Современные пневматические подвески:

Как правило, современные системы управления одновременно реализуют три алгоритма работы «пневмы». Во-первых, принудительное изменение уровня кузова: в этом случае клиренс и жесткость подвески автомобиля регулируется водителем вручную с помощью специальных регулирующих устройств. На «лоурайдеры» (автомобили с низкой посадкой) устанавливается подвеска как раз с таким типом алгоритма, который, зачастую, исключает все остальные указанные ниже варианты ее работы.

В США есть целая автомобильная культура, сконцентрированная на использовании пневматических и гидравлических подвесок при доработке автомобилей и превращении их в так называемые «лоурайдеры»

Во-вторых, автоматическое поддержание уровня кузова. В данном случае речь идет о полностью автоматической регулировке клиренса или жесткости подвески автомобиля с помощью электроники, поддерживающей заданный уровень кузова автомобиля независимо от его загруженности.

Наконец, в-третьих, автоматическое изменение уровня кузова в зависимости от скорости автомобиля, что обеспечивает устойчивость авто в движении. При наборе скорости, программа управления автоматически уменьшает клиренс. При торможении, кузов автомобиля возвращается в исходное заданное положение.

Сегодня управляемые пневматические подвески применяют многие ведущие автопроизводители из США, Европы и Японии, среди них такие известные марки, как Audi, BMW, Volkswagen, Mercedes-Benz, Ford, GM, Land Rover, Lexus, Subaru и SsangYong . Помимо прочего, в США существует целая автомобильная культура, сконцентрированная на использовании пневматических и гидравлических подвесок при доработке автомобилей и превращении их в так называемые «лоурайдеры» - «танцующие» автомобили или буквально лежащие «на брюхе».

Плюсы и минусы пневматической подвески:

Основное преимущество использования пневмоподвески заключается в том, что автомобиль сохраняет великолепную плавность хода, при этом не «клюет» носом при торможении, не кренится в крутых поворотах, на большой скорости становится устойчивее и лучше держит дорогу.

Из недостатков можно выделить лишь сильный износ резиновых оболочек-манжет (особенно при эксплуатации в России) и их высокую стоимость. Кроме того, пневматическая подвеска очень чувствительна к условиям эксплуатации: ее ресурс могут резко сократить низкие температуры или чересчур «едкие» дорожные реагенты.

Благодарю за внимание!



Публикации по теме